Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Galangin for COVID-19

Galangin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Rafiq et al., A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products, Molecules, doi:10.3390/molecules28124860
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2—the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins—were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, MDPI AG, doi:10.20944/preprints202003.0214.v1
COVID-19 pandemic is a serious problem in the world today. The SARS-CoV-2 virus that causes COVID-19 has important proteins used for its infection and development, namely the protease and spike glycoprotein. The RBD (Receptor Binding Domain) of spike glycoprotein (RBD-S) can bind to the ACE2 (Angiotensin Converting Enzyme-2) receptor at the protease domain (PD) (PD-ACE2) of the host cell, thereby leading to a viral infection. This study aims to reveal the potential of compounds contained in Curcuma sp., Citrus sp., Alpinia galanga, and Caesalpinia sappan as anti SARS-CoV-2 through its binding to 3 protein receptors. The study was conducted by molecular docking using the MOE 2010 program (licensed from Faculty of Pharmacy UGM, Indonesia). The selected protein targets are RBD-S (PDB ID:6LXT), PD-ACE2 (PDB ID: 6VW1), and SARS-CoV-2 protease (PDB ID:6LU7). The affinities of bonds formed is represented as a docking score. The results show that hesperidin, one of the compounds in Citrus sp., has the lowest docking score for all three protein receptors representing the highest affinity to bind the receptors. Moreover, all of the citrus flavonoids possess good affinity to the respected receptors as well as curcumin, brazilin, and galangin, indicating that those compounds perform inhibitory potential for the viral infection and replication. In general, the results of this study indicate that Citrus sp. exhibit the best potential as an inhibitor to the development of the SARS-CoV-2, followed by galangal, sappan wood, and Curcuma sp. that can be consumed in daily life as prophylaxis of COVID-19.
Flores-Félix et al., Consumption of Phenolic-Rich Food and Dietary Supplements as a Key Tool in SARS-CoV-19 Infection, Foods, doi:10.3390/foods10092084
The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host’s immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit