Duloxetine for COVID-19
Duloxetine has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, Frontiers in Pharmacology, doi:10.3389/fphar.2020.592737
,
Drug repurposing is a rapid approach to identify therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drugs and 49 investigational drugs. The anti-SARS-CoV-2 activities of 230 of these confirmed compounds, of which 38 are approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA-approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set is a useful resource for drug repurposing efforts, including design of new drug combinations for clinical trials for SARS-CoV-2.
Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, bioRxiv, doi:10.1101/2022.03.24.485618
,
The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on \emph{knowledge graphs}, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi {\sl et al.} recently developed the \drcov \ model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the \drcov \ model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware --- we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
Please send us corrections, updates, or comments. Vaccines and
treatments are complementary. All practical, effective, and safe means should
be used based on risk/benefit analysis. No treatment, vaccine, or intervention
is 100% available and effective for all current and future variants. We do not
provide medical advice. Before taking any medication, consult a qualified
physician who can provide personalized advice and details of risks and
benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.