Cianidanol for COVID-19
Cianidanol has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Phytochemicals of Hibiscus sabdariffa with Therapeutic Potential against SARS-CoV-2: A Molecular Docking Study, Journal of the Institute of Science and Technology, doi:10.21597/jist.1187616
,
In this study, the possible interactions of 17 phytochemicals that were reported as the most abundant biomolecules of Hibiscus sabdariffa, including many organic acids as well as catechin and quercetin derivatives, with 3CLpro and PLpro proteases of SARS-CoV-2 have been investigated via molecular docking. Caffeoylshikimic acid/3CLpro showed the lowest binding energy (-7.72 kcal/mol) with seven H-bonds. The second-lowest binding energy was computed in the chlorogenic acid/3CLpro complex (-7.18 kcal/mol), which was found to form 6 H-bonds. Also, low binding energies of cianidanol (-7.10 kcal/mol), cryptochlorogenic acid (-6.67 kcal/mol), and kaempferol (-6.82 kcal/mol) were calculated to 3CLpro with several H-bond interactions. Nelfinavir (-10.16 kcal/mol) and remdesivir (-6.40 kcal/mol), which have been used against COVID-19, were obtained to have low binding energies to 3CLpro with 3 H-bond formations each. On the other hand, the nicotiflorin/PLpro complex, which had the lowest binding energy (-7.40 kcal/mol), was found to have only 1 H-bond interaction. The second-lowest binding energy was reported in chlorogenic acid/PLpro (-7.20 kcal/mol), which was found to possess four H-bonds. On the other hand, epigallocatechin gallate/PLpro, which was shown to have a -5.95 kcal/mol binding energy, was found to form 8 H-bond interactions. Furthermore, the quercetin pentosylhexoside/PLpro complex was monitored to have low binding energy (-6.54 kcal/mol) with 9 H-bonds, which stands as the highest number of H-bonds in all complexes. Therefore, several molecules of Hibiscus sabdariffa were found to have strong binding affinity to the main proteases of SARS-CoV-2. This study suggests many compounds, including caffeoylshikimic acid and nicotiflorin, to inhibit 3CLpro and PLpro activities. As a result, numerous chemicals derived from Hibiscus sabdariffa have the potential to be employed therapeutically against SARS-CoV-2 infection.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.