Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Celastrol for COVID-19

Celastrol has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Alagawani et al., In Silico Development of SARS-CoV-2 Non-covalent Mpro Inhibitors: A Review, MDPI AG, doi:10.20944/preprints202409.0073.v1
Coronaviruses (CoVs) have recently emerged as significant causes of respiratory disease outbreaks. The novel coronavirus pneumonia of 2019, known as COVID-19, are highly infectious and triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding virus-host interactions and molecular targets in host cell death signalling is crucial for treatment development. Small natural compounds like celastrol and curcumin, acting as proteasome inhibitors, can potentially modify NF-κB signalling for treating SARS-CoV-2 infections. Various natural constituents, including alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones, inhibit viral infection, progression, and amplification of coronaviruses. Derived from medicinal herbs, these compounds possess anti-inflammatory and antiviral properties, impacting the viral life cycle, including entry, replication, assembly, and release of COVID-19 virions. This review focuses on the development of small molecules of non-covalent inhibitors targeting the Main Protease (Mpro, also called 3CLpro) enzyme of SARS-CoV-2. It highlights the design using molecular dynamics (MD) studies and computational methods for further improvements in Mpro inhibitor design. The in-silico approach, which is pivotal in this process, provides an accelerated virtual avenue for exploring and developing potential inhibitors, representing the latest advancements in drug design.
Jabeen et al., Insights for Future Pharmacology: Exploring Phytochemicals as Potential Inhibitors Targeting SARS-CoV-2 Papain-like Protease, Future Pharmacology, doi:10.3390/futurepharmacol4030029
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of PLpro, identify gaps, and propose novel insights for future reference. (2) Methods: A thorough literature search was conducted using Google Scholar, ScienceDirect, and PubMed. Out of 150 articles reviewed, 57 met inclusion criteria, focusing on SARS-CoV-2 PLpro inhibitors, excluding studies on other coronaviruses or solely herbal extracts. Data were presented class-wise, and phytochemicals were grouped into virtual, weak, modest, and potential inhibitors. (3) Results: Approximately 100 phytochemicals are reported in the literature as PLpro inhibitors. We classified them as virtual inhibitors (70), weak inhibitors (13), modest inhibitors (11), and potential inhibitors (6). Flavonoids, terpenoids, and their glycosides predominated. Notably, six phytochemicals, including schaftoside, tanshinones, hypericin, and methyl 3,4-dihydroxybenzoate, emerged as potent PLpro inhibitors with favorable selectivity indices and disease-mitigation potential; (4) Conclusions: PLpro stands as a promising therapeutic target against SARS-CoV-2. The phytochemicals reported in the literature possess valuable drug potential; however, certain experimental and clinical gaps need to be filled to meet the therapeutic needs.
Szabó et al., Natural products as a source of Coronavirus entry inhibitors, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2024.1353971
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Zaa et al., Neuroprotective Agents with Therapeutic Potential for COVID-19, Biomolecules, doi:10.3390/biom13111585
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Shahali et al., A Comprehensive Review on Potentially Therapeutic Agents against COVID-19 from Natural Sources, Current Traditional Medicine, doi:10.2174/2215083809666230203142343
Abstract: Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent pandemic and worldwide outbreak of respiratory disease. Since there are no known specific drugs for fighting this virus and the process for new drug development is lengthy, scientists have been trying to develop drugs against this viral infection. The potent antiviral activity of natural products has been confirmed in several previous studies. Viral and host proteins contributing to COVID-19 infections can be targeted by natural compounds derived from plants, marine organisms, and microorganisms. The most important of these compounds are polyphenols (e.g., anthraquinone polyphenol, hinokinin, curcumin, and epigallocatechin gallate), alkaloids (e.g., isoquinoline, 10- hydroxyusambarensine, anisotine, and adhatodine), and terpenoids (salvinorin A, thymoquinone, bilobalide, ginkgolide A, and celastrol) from plants, sulphated polysaccharides (carrageenans, chondroitin sulfate C, and fucoidan) from marine organisms, and glycocin F and lactococcin G phycocyanin, and lipopeptide from microorganisms. This study reviews these compounds and their mechanism of action for treating COVID-19 infection and guides researchers in developing effective and safe therapeutic agents against this disease from naturally derived compounds.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit