α-terpeneol for COVID-19

α-terpeneol has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed α-terpeneol in detail.
Raman et al., Phytoconstituents of Citrus limon (Lemon) as Potential Inhibitors Against Multi Targets of SARS‐CoV‐2 by Use of Molecular Modelling and In Vitro Determination Approaches, ChemistryOpen, doi:10.1002/open.202300198
AbstractIn the present work, phytoconstituents from Citrus limon are computationally tested against SARS‐CoV‐2 target protein such as Mpro ‐ (5R82.pdb), Spike ‐ (6YZ5.pdb) &RdRp ‐ (7BTF.pdb) for COVID‐19. Docking was done by glide model, QikProp was performed by in silico ADMET screening & Prime MM‐GB/SA modules were used to define binding energy. When compared with approved COVID‐19 drugs such as Remdesivir, Ritonavir, Lopinavir, and Hydroxychloroquine, plant‐based constituents such as Quercetin, Rutoside, Naringin, Eriocitrin, and Hesperidin. bind with significant G‐scores to the active SARS‐CoV‐2 place. The constituents Rutoside and Eriocitrin were studied in each MD simulation in 100 ns against 3 proteins 5R82.pdb, 6YZ5.pdb and 7BTF.pdb.We performed an assay with significant natural compounds from contacts and in silico results (Rutin, Eriocitrin, Naringin, Hesperidin) using 3CL protease assay kit (B.11529 Omicron variant). This kit contained 3CL inhibitor GC376 as Control. The IC50 value of the test compound was found to be Rutin −17.50 μM, Eriocitrin−37.91 μM, Naringin−39.58 μM, Hesperidine−140.20 μM, the standard inhibitory concentration of GC376 was 38.64 μM. The phytoconstituents showed important interactions with SARS‐CoV‐2 targets, and potential modifications could be beneficial for future development.
Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, Interdisciplinary Perspectives on Infectious Diseases, doi:10.1155/2023/7598307
COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them. The clinical application and the curative effect were reported high in China and in India. Accordingly, this review highlights the unprecedented opportunities offered by medicinal plants and their compounds, candidates as the therapeutic agent, against COVID-19 by acting as viral protein inhibitors and immunomodulator in (32 clinical trials and hundreds of in silico experiments) conjecture with modern science. Moreover, the associated foreseeable challenges for their viral outbreak management were discussed in comparison to synthetic drugs.