Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Results
Abstract
All convalescent plasma..
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchConvalescent PlasmaConv. Plasma (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes    Recent:   
0 0.5 1 1.5 2+ Mortality, day 90 -4% Improvement Relative Risk Mortality, day 30 -17% Conv. Plasma  Kasten et al.  LATE TREATMENT Is late treatment with convalescent plasma beneficial for COVID-19? Retrospective 50 patients in the USA (September 2020 - February 2021) Study underpowered to detect differences c19early.org Kasten et al., Scientific Reports, Dec 2023 Favors conv. plasma Favors control

COVID-19 outcome is not affected by anti-CD20 or high-titer convalescent plasma in immunosuppressed patients

Kasten et al., Scientific Reports, doi:10.1038/s41598-023-48145-x, NCT04884477
Dec 2023  
  Post
  Facebook
Share
  Source   PDF   All   Meta
Retrospective 144 immunocompromised patients treated with anti-CD20 therapy prior to contracting COVID-19. Among 50 patients hospitalized within 14 days, administration of high-titer convalescent plasma in the first 14 days was not associated with improved outcomes.
risk of death, 3.8% higher, RR 1.04, p = 1.00, treatment 7 of 19 (36.8%), control 11 of 31 (35.5%), day 90.
risk of death, 16.5% higher, RR 1.17, p = 1.00, treatment 5 of 19 (26.3%), control 7 of 31 (22.6%), day 30.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Kasten et al., 1 Dec 2023, retrospective, USA, peer-reviewed, median age 63.6, 13 authors, study period 1 September, 2020 - 28 February, 2021, trial NCT04884477 (history). Contact: mkasten@mayo.edu, bauer.philippe@mayo.edu.
This PaperConv. PlasmaAll
COVID-19 outcome is not affected by anti-CD20 or high-titer convalescent plasma in immunosuppressed patients
Mary J Kasten, Brian D Lahr, Anusha Parisapogu, Zachary A Yetmar, John C O’horo, Robert Orenstein, Pablo Moreno Franco, Raymund R Razonable, Paschalis Vergidis, Aditya S Shah, Mark J Enzler, David J Inwards, Philippe R Bauer
Scientific Reports, doi:10.1038/s41598-023-48145-x
The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma in the treatment of Coronavirus Disease 2019 (COVID-19) in immunosuppressed individuals remains controversial. We describe the course of COVID-19 in patients who had received anti-CD20 therapy within the 3 years prior to infection. We compared outcomes between those treated with and those not treated with high titer SARS-CoV2 convalescent plasma. We identified 144 adults treated at Mayo clinic sites who had received anti-CD20 therapies within a median of 5.9 months prior to the COVID-19 index date. About one-third (34.7%) were hospitalized within 14 days and nearly half (47.9%) within 90 days. COVID-19 directed therapy included anti-spike monoclonal antibodies (n = 30, 20.8%), and, among those hospitalized within 14 days (n = 50), remdesivir (n = 45, 90.0%), glucocorticoids (n = 36, 72.0%) and convalescent plasma (n = 24, 48.0%). The duration from receipt of last dose of anti-CD20 therapy did not correlate with outcomes. The overall 90-day mortality rate was 14.7%. Administration of convalescent plasma within 14 days of the COVID-19 diagnosis was not significantly associated with any study outcome. Further study of COVID-19 in CD20-depleted individuals is needed focusing on the early administration of new and potentially combination antiviral agents, associated or not with vaccine-boosted convalescent plasma.
Author contributions Authors M.J.K., B.D.L., Z.A.Y., J.C.O., M.J.E., D.J.I., R.R.R., A.S.S., P.V., P.R.B. were all involved with conception and design of the study.Authors M.J.K., A.P., Z.A.Y., J.C.O., M.J.E., P.M.F., R.O., R.R.R., A.S.S., P.V., P.R.B. were all involved in data acquisition.Authors M.J.K., B.D.L., A.P., Z.A.Y., J.C.O., M.J.E., D.J.I., P.M.F., R.O., R.R.R., A.S.S., P.V., P.R.B. were all involved in data interpetation.All Authors M.J.K., B.D.L., A.P., Z.A.Y., J.C.O., M.J.E., D.J.I., P.M.F., R.O., R.R.R., A.S.S., P.V., P.R.B. were involved with drafting and approving the manuscript. Competing interests Additional information Supplementary Information The online version contains supplementary material available at https:// doi. org/
References
Avouac, COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: A cohort study, Lancet Rheumatol, doi:10.1016/S2665-9913(21)00059-X
Biernat, Early administration of convalescent plasma improves survival in patients with hematological malignancies and COVID-19, Viruses, doi:10.3390/v13030436
Booth, Key findings from the UKCCMP cohort of 877 patients with haematological malignancy and COVID-19: Disease control as an important factor relative to recent chemotherapy or anti-CD20 therapy, Br. J. Haematol
Cano, Impact of corticosteroids in coronavirus disease 2019 outcomes: Systematic review and meta-analysis, Chest, doi:10.1016/j.chest.2020.10.054
Chen, SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2029849
Cook, Third primary SARS-CoV-2 mRNA vaccines enhance antibody responses in most patients with haematological malignancies, Nat Commun, doi:10.1038/s41467-022-34657-z
Core, R: A language and environment for statistical computing
Ferrari, Caprioli, Weber, Rambaldi, Lussana, Convalescent hyperimmune plasma for chemo-immunotherapy induced immunodeficiency in COVID-19 patients with hematological malignancies, Leuk. Lymphom, doi:10.1080/10428194.2021.1872070
Ford, Successful treatment of prolonged, severe coronavirus disease 2019 lower respiratory tract disease in a B cell acute lymphoblastic leukemia patient with an extended course of remdesivir and nirmatrelvir/ritonavir, Clin. Infect. Dis
Gerber, Protracted SARS-CoV-2 pneumonia with rituximab treatment: About two cases, J. Med. Virol, doi:10.1002/jmv.26921
Gottlieb, Early remdesivir to prevent progression to severe covid-19 in outpatients, N. Engl. J. Med, doi:10.1056/NEJMoa2116846
Hamilton, Lee, Arnold, Lilford, Hemming, Is convalescent plasma futile in COVID-19? A Bayesian reanalysis of the RECOVERY randomized controlled trial, Int. J. Infect. Dis, doi:10.1016/j.ijid.2021.06.034
Hammond, Oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2118542
Harvey, Association of SARS-CoV-2 seropositive antibody test with risk of future infection, JAMA Intern. Med, doi:10.1001/jamainternmed.2021.0366
Hensley, Intractable coronavirus disease 2019 (COVID-19) and prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in a chimeric antigen receptor-modified T-cell therapy recipient: A case study, Clin. Infect. Dis, doi:10.1093/cid/ciab072
Herishanu, Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia, Blood, doi:10.1182/blood.2021011568
Hueso, Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19, Blood, doi:10.1182/blood.2020008423
Hughes, Clinical illness with viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) virus presenting 72 days after infection in an immunocompromised patient, Infect. Control Hosp. Epidemiol, doi:10.1017/ice.2021.120
Investigators, Interleukin-6 receptor antagonists in critically ill patients with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2100433
Janiaud, Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: A systematic review and meta-analysis, JAMA, doi:10.1001/jama.2021.2747
Jeny, Correspondence on "glucocorticoid-induced relapse of COVID-19 in a patient with sarcoidosis, Ann. Rheum. Dis, doi:10.1136/annrheumdis-2020-218957
Joyner, Convalescent plasma antibody levels and the risk of death from covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2031893
Kalil, Baricitinib plus remdesivir for hospitalized adults with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2031994
Kasten, Abbvie, Amgen, Lilly, Myers Squib et al., Grants from Nference, Inc and the MITRE corporation for COVID-19 research unrelated to the present work
Kenig, Ishay, Kharouf, Rubin, Treatment of B-cell depleted COVID-19 patients with convalescent plasma and plasmabased products, Clin. Immunol, doi:10.1016/j.clim.2021.108723
Kim, An, Kim, Hwang, Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis, PLoS Med, doi:10.1371/journal.pmed.1003501
Kim, Clinical characteristics and mortality of patients with hematologic malignancies and COVID-19: A systematic review, Eur. Rev. Med. Pharmacol. Sci, doi:10.26355/eurrev_202011_23852
Lancman, Mascarenhas, Bar-Natan, Severe COVID-19 virus reactivation following treatment for B cell acute lymphoblastic leukemia, J. Hematol. Oncol, doi:10.1186/s13045-020-00968-1
Levavi, Lancman, Gabrilove, Impact of rituximab on COVID-19 outcomes, Ann. Hematol
Levine, COVID-19 convalescent plasma outpatient therapy to prevent outpatient hospitalization: A meta-analysis of individual participant data from five randomized trials, Clin. Infect. Dis
Mckay, Rituximab infusion timing, cumulative dose, and hospitalization for COVID-19 in persons with multiple sclerosis in Sweden, JAMA. Netw. Open, doi:10.1001/jamanetworkopen
Misset, Convalescent plasma for Covid-19-induced ARDS in mechanically ventilated patients, NEJM
O'horo, Outcomes of COVID-19 with the Mayo Clinic model of care and research, Mayo Clin. Proc, doi:10.1016/j.mayocp.2020.12.006
O'shaughnessy, Revised Letter of Authorization
Razonable, research grants (funds to the institution) from Gilead, Regeneron and Roche; member of the Data and Safety Monitoring Board (Novartis) and Endpoint Adjudication Committee (Allovir); member of the Board of Directors
Ripoll, Vaccine-boosted convalescent plasma therapy for patients with immunosuppression and COVID-19, Blood Adv
Rubio-Rivas, WHO ordinal scale and inflammation risk categories in COVID-19. Comparative study of the severity scales, J. Gen. Intern. Med, doi:10.1007/s11606-022-07511-7
Rutherford, Risk factors for severe outcomes in patients with systemic vasculitis and COVID-19: A binational, registrybased cohort study, Arthrit. Rheumatol, doi:10.1002/art.41728
Senefeld, COVID-19 convalescent plasma for the treatment of immunocompromised patients: A systematic review and meta-analysis, JAMA Netw. Open, doi:10.1001/jamanetworkopen.2022.50647
Senefeld, Use of convalescent plasma in COVID-19 patients with immunosuppression, Transfusion, doi:10.1111/trf.16525
Sharma, Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients: An observational cohort study, Lancet Haematol, doi:10.1016/S2352-3026(20)30429-4
Smith, Gonzales, Li, Langer-Gould, Analysis of rituximab use, time between rituximab and SARS-CoV-2 vaccination, and COVID-19 hospitalization or death in patients with multiple sclerosis, JAMA Netw. Open, doi:10.1001/jamanetworkopen.2022.48664
Sun, Pleyer, Wiestner, COVID-19 vaccines for patients with haematological conditions, Lancet Haematol, doi:10.1016/S2352-3026(21)00073-9
Thompson, Association of convalescent plasma therapy with survival in patients with hematologic cancers and COVID-19, JAMA Oncol, doi:10.1001/jamaoncol.2021.1799
Tong, Core outcome measures for trials in people with coronavirus disease 2019: Respiratory failure, multiorgan failure, shortness of breath, and recovery, Crit. Care Med, doi:10.1097/CCM.0000000000004817
Trottier, Dual antiviral therapy for persistent coronavirus disease 2019 and associated organizing pneumonia in an immunocompromised host, Clin. Infect. Dis
Vardhana, Wolchok, The many faces of the anti-COVID immune response, J. Exp. Med, doi:10.1084/jem.20200678
Vijenthira, Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients, Blood, doi:10.1182/blood.2020008824
Von Elm, (STROBE) statement: Guidelines for reporting observational studies
Weinreich, REGN-COV2, a neutralizing antibody cocktail, in outpatients with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2035002
Late treatment
is less effective
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit