Protective Effects of Astodrimer Sodium 1% Nasal Spray Formulation against SARS-CoV-2 Nasal Challenge in K18-hACE2 Mice
Jeremy R A Paull, Carolyn A Luscombe, Alex Castellarnau, Graham P Heery, Michael D Bobardt, Philippe A Gallay
Viruses, doi:10.3390/v13081656
Strategies to combat COVID-19 require multiple ways to protect vulnerable people from infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, and they were infected intranasally with SARS-CoV-2 after the first product administration on Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test product activity. Astodrimer sodium 1% significantly reduced the viral genome copies (>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium 1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in lower virus transmission rates. Viraemia was low or undetectable in animals treated with astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable viral replication in the liver. Similarly, low virus replication in the nasal cavity after treatment with astodrimer sodium 1% potentially protected the brain from infection. Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1β, TNFα and TGFβ and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection or for reducing the severity of COVID-19.
References
Bernstein, Stanberry, Sacks, Ayisi, Gong et al., Evaluations of Unformulated and FormulatedDendrimer-Based Microbicide Candidates in Mouse and Guinea Pig Models of Genital Herpes, Antimicrob. Agents Chemother,
doi:10.1128/AAC.47.12.3784-3788.2003
Bhaskar, Sinha, Banach, Mittoo, Weissert et al., Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper, Front. Immunol,
doi:10.3389/fimmu.2020.01648
Buonanno, Stabile, Morawaska, Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment, Environ. Int,
doi:10.1016/j.envint.2020.105794
Burks, Rosas-Hernandez, Ramirez-Lee, Cuevas, Talpos, Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?, Brain Behav. Immun,
doi:10.1016/j.bbi.2020.12.031
Chow, O'brodovich, Plumb, Wen, Sohn et al., Development of an epithelium-specific expression cassette with human DNA regulatory elements for transgene expression in lung airways, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.94.26.14695
Chow, Plumb, Wen, Steer, Lu et al., Targeting Transgene Expression to Airway Epithelia and Submucosal Glands, Prominent Sites of Human CFTR Expression, Mol. Ther,
doi:10.1006/mthe.2000.0135
Jiang, Emau, Cairns, Flanary, Morton et al., SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal Transmission of SHIV89.6Pin Macaques, AIDS Res. Hum. Retroviruses,
doi:10.1089/aid.2005.21.207
Jiang, Liu, Chen, Shan, Zhou et al., Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2, Cell,
doi:10.1016/j.cell.2020.05.027
Jørgensen, Holter, Christensen, Schjalm, Tonby et al., Increased interleukin-6 and macrophage chemoattractant protein-1 are associated with respiratory failure in COVID-19, Sci. Rep,
doi:10.1038/s41598-020-78710-7
Matschke, Lütgehetmann, Hagel, Sperhake, Schröder et al., Neuropathology of patients with COVID-19 in Germany: A post-mortem case series, Lancet Neurol,
doi:10.1016/S1474-4422(20)30308-2
Mccray, Jr, Pewe, Wohlford-Lenane, Hickey et al., Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus, J. Virol,
doi:10.1128/JVI.02012-06
Mcgowan, Gomez, Bruder, Febo, Chen et al., Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004), AIDS,
doi:10.1097/QAD.0b013e328346bd3e
O'loughlin, Millwood, Mcdonald, Price, Kaldor et al., Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel ® ): A Dose Ranging, Phase I Study, Sex. Transm. Dis,
doi:10.1097/OLQ.0b013e3181bc0aac
Olbei, Hautefort, Modos, Treveil, Poletti et al., SARS-CoV-2 Causes a Different Cytokine Response Compared to Other Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients, Front. Immunol,
doi:10.3389/fimmu.2021.629193
Paull, Heery, Bobardt, Castellarnau, Luscombe et al., Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro, Antivir. Res,
doi:10.1016/j.antiviral.2021.105089
Smith, Somsen, Van Rijn, Kooij, Van Der Hoek et al., Aerosol persistence in relation to possible transmission of SARS-CoV-2, Phys. Fluids,
doi:10.1063/5.0027844
Song, Zhang, Israelow, Lu-Culligan, Prado et al., Neuroinvasion of SARS-CoV-2 in human and mouse brain, J. Exp. Med,
doi:10.1084/jem.20202135
Sungnak, Huang, Becavin, Berg, Queen et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nat. Med,
doi:10.1038/s41591-020-0868-6
Tyssen, Henderson, Johnson, Sterjovski, Moore et al., Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity, PLoS ONE,
doi:10.1371/journal.pone.0012309
Wang, Liu, Liu, Li, Lin et al., SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19, J. Hepatol,
doi:10.1016/j.jhep.2020.05.002
Winkler, Bailey, Kafai, Nair, Mccune et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function, Nat. Immunol,
doi:10.1038/s41590-020-0778-2
Wölfel, Corman, Guggemos, Seilmaier, Zange et al., Virological assessment of hospitalized patients with COVID-2019, Nature,
doi:10.1038/s41586-020-2196-x
Zhang, Chen, Swaroop, Xu, Wang et al., Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro, Cell Discov,
doi:10.1038/s41421-020-00222-5
Zhang, Shi, Wang, Liver injury in COVID-19: Management and challenges, Lancet Gastroenterol. Hepatol
Zheng, Wong, Li, Verma, Ortiz et al., COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice, Nat. Cell Biol,
doi:10.1038/s41586-020-2943-z
{ 'indexed': {'date-parts': [[2024, 9, 6]], 'date-time': '2024-09-06T10:14:46Z', 'timestamp': 1725617686809},
'reference-count': 30,
'publisher': 'MDPI AG',
'issue': '8',
'license': [ { 'start': { 'date-parts': [[2021, 8, 20]],
'date-time': '2021-08-20T00:00:00Z',
'timestamp': 1629417600000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'funder': [ { 'name': 'Australian Medical Research Future Fund (MRFF) Biomedical Translation Bridge (BTB) '
'Program',
'award': ['BTBR300093']}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>Strategies to combat COVID-19 require multiple ways to protect vulnerable people from '
'infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of '
'infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of '
'astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer '
'sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, '
'and they were infected intranasally with SARS-CoV-2 after the first product administration on '
'Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated '
'with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test '
'product activity. Astodrimer sodium 1% significantly reduced the viral genome copies '
'(>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The '
'pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in '
'the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and '
'trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium '
'1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on '
'Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in '
'lower virus transmission rates. Viraemia was low or undetectable in animals treated with '
'astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable '
'viral replication in the liver. Similarly, low virus replication in the nasal cavity after '
'treatment with astodrimer sodium 1% potentially protected the brain from infection. '
'Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1β, '
'TNFα and TGFβ and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer '
'sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 '
'mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection '
'or for reducing the severity of COVID-19.</jats:p>',
'DOI': '10.3390/v13081656',
'type': 'journal-article',
'created': {'date-parts': [[2021, 8, 23]], 'date-time': '2021-08-23T03:00:09Z', 'timestamp': 1629687609000},
'page': '1656',
'source': 'Crossref',
'is-referenced-by-count': 16,
'title': 'Protective Effects of Astodrimer Sodium 1% Nasal Spray Formulation against SARS-CoV-2 Nasal '
'Challenge in K18-hACE2 Mice',
'prefix': '10.3390',
'volume': '13',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-9981-421X',
'authenticated-orcid': False,
'given': 'Jeremy R. A.',
'family': 'Paull',
'sequence': 'first',
'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]},
{ 'given': 'Carolyn A.',
'family': 'Luscombe',
'sequence': 'additional',
'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]},
{ 'given': 'Alex',
'family': 'Castellarnau',
'sequence': 'additional',
'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]},
{ 'given': 'Graham P.',
'family': 'Heery',
'sequence': 'additional',
'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]},
{ 'given': 'Michael D.',
'family': 'Bobardt',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Immunology and Microbiology, The Scripps Research '
'Institute, La Jolla, CA 92307, USA'}]},
{ 'given': 'Philippe A.',
'family': 'Gallay',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Immunology and Microbiology, The Scripps Research '
'Institute, La Jolla, CA 92307, USA'}]}],
'member': '1968',
'published-online': {'date-parts': [[2021, 8, 20]]},
'reference': [ { 'key': 'ref_1',
'doi-asserted-by': 'crossref',
'first-page': '220',
'DOI': '10.1016/S0140-6736(20)32656-8',
'article-title': '6-month consequences of COVID-19 in patients discharged from hospital: '
'A cohort study',
'volume': '397',
'author': 'Huang',
'year': '2021',
'journal-title': 'Lancet'},
{ 'key': 'ref_2',
'doi-asserted-by': 'crossref',
'first-page': '105089',
'DOI': '10.1016/j.antiviral.2021.105089',
'article-title': 'Virucidal and antiviral activity of astodrimer sodium against '
'SARS-CoV-2 in vitro',
'volume': '191',
'author': 'Paull',
'year': '2021',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_3',
'doi-asserted-by': 'crossref',
'first-page': '1',
'DOI': '10.1038/s41421-020-00222-5',
'article-title': 'Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by '
'approved drugs in vitro',
'volume': '6',
'author': 'Zhang',
'year': '2020',
'journal-title': 'Cell Discov.'},
{ 'key': 'ref_4',
'doi-asserted-by': 'crossref',
'unstructured': 'Tyssen, D., Henderson, S.A., Johnson, A., Sterjovski, J., Moore, K., La, '
'J., Zanin, M., Sonza, S., Karellas, P., and Giannis, M.P. (2010). '
'Structure Activity Relationship of Dendrimer Microbicides with Dual '
'Action Antiviral Activity. PLoS ONE, 5.',
'DOI': '10.1371/journal.pone.0012309'},
{ 'key': 'ref_5',
'doi-asserted-by': 'crossref',
'first-page': '195',
'DOI': '10.1016/j.antiviral.2011.03.186',
'article-title': 'Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1',
'volume': '90',
'author': 'Telwatte',
'year': '2011',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_6',
'doi-asserted-by': 'crossref',
'first-page': '3784',
'DOI': '10.1128/AAC.47.12.3784-3788.2003',
'article-title': 'Evaluations of Unformulated and FormulatedDendrimer-Based Microbicide '
'Candidates in Mouse and Guinea Pig Models of Genital Herpes',
'volume': '47',
'author': 'Bernstein',
'year': '2003',
'journal-title': 'Antimicrob. Agents Chemother.'},
{ 'key': 'ref_7',
'doi-asserted-by': 'crossref',
'first-page': '207',
'DOI': '10.1089/aid.2005.21.207',
'article-title': 'SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal '
'Transmission of SHIV89.6Pin Macaques',
'volume': '21',
'author': 'Jiang',
'year': '2005',
'journal-title': 'AIDS Res. Hum. Retroviruses'},
{ 'key': 'ref_8',
'doi-asserted-by': 'crossref',
'first-page': '100',
'DOI': '10.1097/OLQ.0b013e3181bc0aac',
'article-title': 'Safety, Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel®): A '
'Dose Ranging, Phase I Study',
'volume': '37',
'author': 'Millwood',
'year': '2010',
'journal-title': 'Sex. Transm. Dis.'},
{ 'key': 'ref_9',
'doi-asserted-by': 'crossref',
'first-page': '1057',
'DOI': '10.1097/QAD.0b013e328346bd3e',
'article-title': 'Phase 1 randomized trial of the vaginal safety and acceptability of '
'SPL7013 gel (VivaGel) in sexually active young women (MTN-004)',
'volume': '25',
'author': 'McGowan',
'year': '2011',
'journal-title': 'AIDS'},
{ 'key': 'ref_10',
'doi-asserted-by': 'crossref',
'first-page': '681',
'DOI': '10.1038/s41591-020-0868-6',
'article-title': 'SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells '
'together with innate immune genes',
'volume': '26',
'author': 'Sungnak',
'year': '2020',
'journal-title': 'Nat. Med.'},
{ 'key': 'ref_11',
'doi-asserted-by': 'crossref',
'first-page': '813',
'DOI': '10.1128/JVI.02012-06',
'article-title': 'Lethal Infection of K18-hACE2 Mice Infected with Severe Acute '
'Respiratory Syndrome Coronavirus',
'volume': '81',
'author': 'McCray',
'year': '2007',
'journal-title': 'J. Virol.'},
{ 'key': 'ref_12',
'first-page': '603',
'article-title': 'COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 '
'mice',
'volume': '589',
'author': 'Zheng',
'year': '2021',
'journal-title': 'Nat. Cell Biol.'},
{ 'key': 'ref_13',
'doi-asserted-by': 'crossref',
'first-page': '807',
'DOI': '10.1016/j.jhep.2020.05.002',
'article-title': 'SARS-CoV-2 infection of the liver directly contributes to hepatic '
'impairment in patients with COVID-19',
'volume': '73',
'author': 'Wang',
'year': '2020',
'journal-title': 'J. Hepatol.'},
{ 'key': 'ref_14',
'doi-asserted-by': 'crossref',
'first-page': '14695',
'DOI': '10.1073/pnas.94.26.14695',
'article-title': 'Development of an epithelium-specific expression cassette with human '
'DNA regulatory elements for transgene expression in lung airways',
'volume': '94',
'author': 'Chow',
'year': '1997',
'journal-title': 'Proc. Natl. Acad. Sci. USA'},
{ 'key': 'ref_15',
'doi-asserted-by': 'crossref',
'first-page': '359',
'DOI': '10.1006/mthe.2000.0135',
'article-title': 'Targeting Transgene Expression to Airway Epithelia and Submucosal '
'Glands, Prominent Sites of Human CFTR Expression',
'volume': '2',
'author': 'Chow',
'year': '2000',
'journal-title': 'Mol. Ther.'},
{ 'key': 'ref_16',
'doi-asserted-by': 'crossref',
'first-page': '830',
'DOI': '10.1038/s41586-020-2312-y',
'article-title': 'The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice',
'volume': '583',
'author': 'Bao',
'year': '2020',
'journal-title': 'Nature'},
{ 'key': 'ref_17',
'doi-asserted-by': 'crossref',
'first-page': '50',
'DOI': '10.1016/j.cell.2020.05.027',
'article-title': 'Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human '
'Angiotensin-Converting Enzyme 2',
'volume': '182',
'author': 'Jiang',
'year': '2020',
'journal-title': 'Cell'},
{ 'key': 'ref_18',
'doi-asserted-by': 'crossref',
'first-page': '1327',
'DOI': '10.1038/s41590-020-0778-2',
'article-title': 'SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung '
'inflammation and impaired function',
'volume': '21',
'author': 'Winkler',
'year': '2020',
'journal-title': 'Nat. Immunol.'},
{ 'key': 'ref_19',
'doi-asserted-by': 'crossref',
'first-page': '106039',
'DOI': '10.1016/j.envint.2020.106039',
'article-title': 'Aerosol transmission of SARS-CoV-2? Evidence, prevention and control',
'volume': '144',
'author': 'Tang',
'year': '2020',
'journal-title': 'Environ. Int.'},
{ 'key': 'ref_20',
'doi-asserted-by': 'crossref',
'first-page': '465',
'DOI': '10.1038/s41586-020-2196-x',
'article-title': 'Virological assessment of hospitalized patients with COVID-2019',
'volume': '581',
'author': 'Corman',
'year': '2020',
'journal-title': 'Nature'},
{ 'key': 'ref_21',
'doi-asserted-by': 'crossref',
'first-page': '105794',
'DOI': '10.1016/j.envint.2020.105794',
'article-title': 'Estimation of airborne viral emission: Quanta emission rate of '
'SARS-CoV-2 for infection risk assessment',
'volume': '141',
'author': 'Buonanno',
'year': '2020',
'journal-title': 'Environ. Int.'},
{ 'key': 'ref_22',
'doi-asserted-by': 'crossref',
'first-page': '557',
'DOI': '10.1038/s41586-020-2271-3',
'article-title': 'Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals',
'volume': '582',
'author': 'Liu',
'year': '2020',
'journal-title': 'Nature'},
{ 'key': 'ref_23',
'doi-asserted-by': 'crossref',
'first-page': '107108',
'DOI': '10.1063/5.0027844',
'article-title': 'Aerosol persistence in relation to possible transmission of SARS-CoV-2',
'volume': '32',
'author': 'Smith',
'year': '2020',
'journal-title': 'Phys. Fluids'},
{ 'key': 'ref_24',
'doi-asserted-by': 'crossref',
'first-page': '1648',
'DOI': '10.3389/fimmu.2020.01648',
'article-title': 'Cytokine Storm in COVID-19—Immunopathological Mechanisms, Clinical '
'Considerations, and Therapeutic Approaches: The REPROGRAM Consortium '
'Position Paper',
'volume': '11',
'author': 'Bhaskar',
'year': '2020',
'journal-title': 'Front. Immunol.'},
{ 'key': 'ref_25',
'first-page': '1',
'article-title': 'Increased interleukin-6 and macrophage chemoattractant protein-1 are '
'associated with respiratory failure in COVID-19',
'volume': '10',
'author': 'Holter',
'year': '2020',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_26',
'doi-asserted-by': 'crossref',
'first-page': '629193',
'DOI': '10.3389/fimmu.2021.629193',
'article-title': 'SARS-CoV-2 Causes a Different Cytokine Response Compared to Other '
'Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients',
'volume': '12',
'author': 'Olbei',
'year': '2021',
'journal-title': 'Front. Immunol.'},
{ 'key': 'ref_27',
'doi-asserted-by': 'crossref',
'first-page': '919',
'DOI': '10.1016/S1474-4422(20)30308-2',
'article-title': 'Neuropathology of patients with COVID-19 in Germany: A post-mortem case '
'series',
'volume': '19',
'author': 'Matschke',
'year': '2020',
'journal-title': 'Lancet Neurol.'},
{ 'key': 'ref_28',
'doi-asserted-by': 'crossref',
'first-page': '7',
'DOI': '10.1016/j.bbi.2020.12.031',
'article-title': 'Can SARS-CoV-2 infect the central nervous system via the olfactory bulb '
'or the blood-brain barrier?',
'volume': '95',
'author': 'Burks',
'year': '2021',
'journal-title': 'Brain Behav. Immun.'},
{ 'key': 'ref_29',
'doi-asserted-by': 'crossref',
'first-page': 'e20202135',
'DOI': '10.1084/jem.20202135',
'article-title': 'Neuroinvasion of SARS-CoV-2 in human and mouse brain',
'volume': '218',
'author': 'Song',
'year': '2021',
'journal-title': 'J. Exp. Med.'},
{ 'key': 'ref_30',
'doi-asserted-by': 'crossref',
'first-page': '428',
'DOI': '10.1016/S2468-1253(20)30057-1',
'article-title': 'Liver injury in COVID-19: Management and challenges',
'volume': '5',
'author': 'Zhang',
'year': '2020',
'journal-title': 'Lancet Gastroenterol. Hepatol.'}],
'container-title': 'Viruses',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/1999-4915/13/8/1656/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2024, 7, 17]],
'date-time': '2024-07-17T16:42:17Z',
'timestamp': 1721234537000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4915/13/8/1656'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2021, 8, 20]]},
'references-count': 30,
'journal-issue': {'issue': '8', 'published-online': {'date-parts': [[2021, 8]]}},
'alternative-id': ['v13081656'],
'URL': 'http://dx.doi.org/10.3390/v13081656',
'relation': {},
'ISSN': ['1999-4915'],
'subject': [],
'container-title-short': 'Viruses',
'published': {'date-parts': [[2021, 8, 20]]}}