Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All astodrimer sodium studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchAstodrimer SodiumAstodrimer Sodium (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes    Recent:   

Protective Effects of Astodrimer Sodium 1% Nasal Spray Formulation against SARS-CoV-2 Nasal Challenge in K18-hACE2 Mice

Paull et al., Viruses, doi:10.3390/v13081656
Aug 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Mouse study showing astodrimer sodium 1% nasal spray significantly reduced SARS-CoV-2 replication, tissue viral loads, and proinflammatory cytokine production in K18-hACE2 mice. Astodrimer sodium reduced viral genome copies and infectious virus in the lung and trachea by >99%, prevented detectable virus in the brain and liver, and significantly reduced IL-6, IL-1α, IL-1β, TNFα, TGFβ, and MCP-1 in serum and tissues compared to placebo.
3 preclinical studies support the efficacy of astodrimer sodium for COVID-19:
2 In Vitro studies1,2
1 In Vivo animal study3
Paull et al., 20 Aug 2021, peer-reviewed, 6 authors. Contact: jeremy.paull@starpharma.com (corresponding author), carolyn.luscombe@starpharma.com, alex.castellarnau@starpharma.com, graham.heery@starpharma.com, mbobardt@scripps.edu, gallay@scripps.edu.
This PaperAstodrimer SodiumAll
Protective Effects of Astodrimer Sodium 1% Nasal Spray Formulation against SARS-CoV-2 Nasal Challenge in K18-hACE2 Mice
Jeremy R A Paull, Carolyn A Luscombe, Alex Castellarnau, Graham P Heery, Michael D Bobardt, Philippe A Gallay
Viruses, doi:10.3390/v13081656
Strategies to combat COVID-19 require multiple ways to protect vulnerable people from infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, and they were infected intranasally with SARS-CoV-2 after the first product administration on Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test product activity. Astodrimer sodium 1% significantly reduced the viral genome copies (>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium 1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in lower virus transmission rates. Viraemia was low or undetectable in animals treated with astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable viral replication in the liver. Similarly, low virus replication in the nasal cavity after treatment with astodrimer sodium 1% potentially protected the brain from infection. Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1β, TNFα and TGFβ and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection or for reducing the severity of COVID-19.
References
Bao, Deng, Huang, Gao, Liu et al., The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice, Nature, doi:10.1038/s41586-020-2312-y
Bernstein, Stanberry, Sacks, Ayisi, Gong et al., Evaluations of Unformulated and FormulatedDendrimer-Based Microbicide Candidates in Mouse and Guinea Pig Models of Genital Herpes, Antimicrob. Agents Chemother, doi:10.1128/AAC.47.12.3784-3788.2003
Bhaskar, Sinha, Banach, Mittoo, Weissert et al., Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper, Front. Immunol, doi:10.3389/fimmu.2020.01648
Buonanno, Stabile, Morawaska, Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment, Environ. Int, doi:10.1016/j.envint.2020.105794
Burks, Rosas-Hernandez, Ramirez-Lee, Cuevas, Talpos, Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?, Brain Behav. Immun, doi:10.1016/j.bbi.2020.12.031
Chow, O'brodovich, Plumb, Wen, Sohn et al., Development of an epithelium-specific expression cassette with human DNA regulatory elements for transgene expression in lung airways, Proc. Natl. Acad. Sci, doi:10.1073/pnas.94.26.14695
Chow, Plumb, Wen, Steer, Lu et al., Targeting Transgene Expression to Airway Epithelia and Submucosal Glands, Prominent Sites of Human CFTR Expression, Mol. Ther, doi:10.1006/mthe.2000.0135
Huang, Huang, Wang, Li, Ren et al., 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study, Lancet, doi:10.1016/S0140-6736(20)32656-8
Jiang, Emau, Cairns, Flanary, Morton et al., SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal Transmission of SHIV89.6Pin Macaques, AIDS Res. Hum. Retroviruses, doi:10.1089/aid.2005.21.207
Jiang, Liu, Chen, Shan, Zhou et al., Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2, Cell, doi:10.1016/j.cell.2020.05.027
Jørgensen, Holter, Christensen, Schjalm, Tonby et al., Increased interleukin-6 and macrophage chemoattractant protein-1 are associated with respiratory failure in COVID-19, Sci. Rep, doi:10.1038/s41598-020-78710-7
Liu, Ning, Chen, Guo, Liu et al., Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals, Nature, doi:10.1038/s41586-020-2271-3
Matschke, Lütgehetmann, Hagel, Sperhake, Schröder et al., Neuropathology of patients with COVID-19 in Germany: A post-mortem case series, Lancet Neurol, doi:10.1016/S1474-4422(20)30308-2
Mccray, Jr, Pewe, Wohlford-Lenane, Hickey et al., Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus, J. Virol, doi:10.1128/JVI.02012-06
Mcgowan, Gomez, Bruder, Febo, Chen et al., Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004), AIDS, doi:10.1097/QAD.0b013e328346bd3e
O'loughlin, Millwood, Mcdonald, Price, Kaldor et al., Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel ® ): A Dose Ranging, Phase I Study, Sex. Transm. Dis, doi:10.1097/OLQ.0b013e3181bc0aac
Olbei, Hautefort, Modos, Treveil, Poletti et al., SARS-CoV-2 Causes a Different Cytokine Response Compared to Other Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients, Front. Immunol, doi:10.3389/fimmu.2021.629193
Paull, Heery, Bobardt, Castellarnau, Luscombe et al., Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro, Antivir. Res, doi:10.1016/j.antiviral.2021.105089
Smith, Somsen, Van Rijn, Kooij, Van Der Hoek et al., Aerosol persistence in relation to possible transmission of SARS-CoV-2, Phys. Fluids, doi:10.1063/5.0027844
Song, Zhang, Israelow, Lu-Culligan, Prado et al., Neuroinvasion of SARS-CoV-2 in human and mouse brain, J. Exp. Med, doi:10.1084/jem.20202135
Sungnak, Huang, Becavin, Berg, Queen et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nat. Med, doi:10.1038/s41591-020-0868-6
Tang, Mao, Jones, Tan, Ji et al., Aerosol transmission of SARS-CoV-2? Evidence, prevention and control, Environ. Int, doi:10.1016/j.envint.2020.106039
Telwatte, Moore, Johnson, Tyssen, Sterjovski et al., Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1, Antivir. Res, doi:10.1016/j.antiviral.2011.03.186
Tyssen, Henderson, Johnson, Sterjovski, Moore et al., Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity, PLoS ONE, doi:10.1371/journal.pone.0012309
Wang, Liu, Liu, Li, Lin et al., SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19, J. Hepatol, doi:10.1016/j.jhep.2020.05.002
Winkler, Bailey, Kafai, Nair, Mccune et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function, Nat. Immunol, doi:10.1038/s41590-020-0778-2
Wölfel, Corman, Guggemos, Seilmaier, Zange et al., Virological assessment of hospitalized patients with COVID-2019, Nature, doi:10.1038/s41586-020-2196-x
Zhang, Chen, Swaroop, Xu, Wang et al., Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro, Cell Discov, doi:10.1038/s41421-020-00222-5
Zhang, Shi, Wang, Liver injury in COVID-19: Management and challenges, Lancet Gastroenterol. Hepatol
Zheng, Wong, Li, Verma, Ortiz et al., COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice, Nat. Cell Biol, doi:10.1038/s41586-020-2943-z
{ 'indexed': {'date-parts': [[2024, 9, 6]], 'date-time': '2024-09-06T10:14:46Z', 'timestamp': 1725617686809}, 'reference-count': 30, 'publisher': 'MDPI AG', 'issue': '8', 'license': [ { 'start': { 'date-parts': [[2021, 8, 20]], 'date-time': '2021-08-20T00:00:00Z', 'timestamp': 1629417600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'name': 'Australian Medical Research Future Fund (MRFF) Biomedical Translation Bridge (BTB) ' 'Program', 'award': ['BTBR300093']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Strategies to combat COVID-19 require multiple ways to protect vulnerable people from ' 'infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of ' 'infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of ' 'astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer ' 'sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, ' 'and they were infected intranasally with SARS-CoV-2 after the first product administration on ' 'Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated ' 'with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test ' 'product activity. Astodrimer sodium 1% significantly reduced the viral genome copies ' '(&gt;99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The ' 'pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in ' 'the viral genome copies (&gt;99.9%) and the infectious virus (&gt;99%) in the lung and ' 'trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium ' '1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on ' 'Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in ' 'lower virus transmission rates. Viraemia was low or undetectable in animals treated with ' 'astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable ' 'viral replication in the liver. Similarly, low virus replication in the nasal cavity after ' 'treatment with astodrimer sodium 1% potentially protected the brain from infection. ' 'Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1β, ' 'TNFα and TGFβ and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer ' 'sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 ' 'mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection ' 'or for reducing the severity of COVID-19.</jats:p>', 'DOI': '10.3390/v13081656', 'type': 'journal-article', 'created': {'date-parts': [[2021, 8, 23]], 'date-time': '2021-08-23T03:00:09Z', 'timestamp': 1629687609000}, 'page': '1656', 'source': 'Crossref', 'is-referenced-by-count': 16, 'title': 'Protective Effects of Astodrimer Sodium 1% Nasal Spray Formulation against SARS-CoV-2 Nasal ' 'Challenge in K18-hACE2 Mice', 'prefix': '10.3390', 'volume': '13', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-9981-421X', 'authenticated-orcid': False, 'given': 'Jeremy R. A.', 'family': 'Paull', 'sequence': 'first', 'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]}, { 'given': 'Carolyn A.', 'family': 'Luscombe', 'sequence': 'additional', 'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]}, { 'given': 'Alex', 'family': 'Castellarnau', 'sequence': 'additional', 'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]}, { 'given': 'Graham P.', 'family': 'Heery', 'sequence': 'additional', 'affiliation': [{'name': 'Starpharma Pty Ltd., Abbotsford, VIC 3067, Australia'}]}, { 'given': 'Michael D.', 'family': 'Bobardt', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Immunology and Microbiology, The Scripps Research ' 'Institute, La Jolla, CA 92307, USA'}]}, { 'given': 'Philippe A.', 'family': 'Gallay', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Immunology and Microbiology, The Scripps Research ' 'Institute, La Jolla, CA 92307, USA'}]}], 'member': '1968', 'published-online': {'date-parts': [[2021, 8, 20]]}, 'reference': [ { 'key': 'ref_1', 'doi-asserted-by': 'crossref', 'first-page': '220', 'DOI': '10.1016/S0140-6736(20)32656-8', 'article-title': '6-month consequences of COVID-19 in patients discharged from hospital: ' 'A cohort study', 'volume': '397', 'author': 'Huang', 'year': '2021', 'journal-title': 'Lancet'}, { 'key': 'ref_2', 'doi-asserted-by': 'crossref', 'first-page': '105089', 'DOI': '10.1016/j.antiviral.2021.105089', 'article-title': 'Virucidal and antiviral activity of astodrimer sodium against ' 'SARS-CoV-2 in vitro', 'volume': '191', 'author': 'Paull', 'year': '2021', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_3', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41421-020-00222-5', 'article-title': 'Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by ' 'approved drugs in vitro', 'volume': '6', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Cell Discov.'}, { 'key': 'ref_4', 'doi-asserted-by': 'crossref', 'unstructured': 'Tyssen, D., Henderson, S.A., Johnson, A., Sterjovski, J., Moore, K., La, ' 'J., Zanin, M., Sonza, S., Karellas, P., and Giannis, M.P. (2010). ' 'Structure Activity Relationship of Dendrimer Microbicides with Dual ' 'Action Antiviral Activity. PLoS ONE, 5.', 'DOI': '10.1371/journal.pone.0012309'}, { 'key': 'ref_5', 'doi-asserted-by': 'crossref', 'first-page': '195', 'DOI': '10.1016/j.antiviral.2011.03.186', 'article-title': 'Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1', 'volume': '90', 'author': 'Telwatte', 'year': '2011', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_6', 'doi-asserted-by': 'crossref', 'first-page': '3784', 'DOI': '10.1128/AAC.47.12.3784-3788.2003', 'article-title': 'Evaluations of Unformulated and FormulatedDendrimer-Based Microbicide ' 'Candidates in Mouse and Guinea Pig Models of Genital Herpes', 'volume': '47', 'author': 'Bernstein', 'year': '2003', 'journal-title': 'Antimicrob. Agents Chemother.'}, { 'key': 'ref_7', 'doi-asserted-by': 'crossref', 'first-page': '207', 'DOI': '10.1089/aid.2005.21.207', 'article-title': 'SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal ' 'Transmission of SHIV89.6Pin Macaques', 'volume': '21', 'author': 'Jiang', 'year': '2005', 'journal-title': 'AIDS Res. Hum. Retroviruses'}, { 'key': 'ref_8', 'doi-asserted-by': 'crossref', 'first-page': '100', 'DOI': '10.1097/OLQ.0b013e3181bc0aac', 'article-title': 'Safety, Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel®): A ' 'Dose Ranging, Phase I Study', 'volume': '37', 'author': 'Millwood', 'year': '2010', 'journal-title': 'Sex. Transm. Dis.'}, { 'key': 'ref_9', 'doi-asserted-by': 'crossref', 'first-page': '1057', 'DOI': '10.1097/QAD.0b013e328346bd3e', 'article-title': 'Phase 1 randomized trial of the vaginal safety and acceptability of ' 'SPL7013 gel (VivaGel) in sexually active young women (MTN-004)', 'volume': '25', 'author': 'McGowan', 'year': '2011', 'journal-title': 'AIDS'}, { 'key': 'ref_10', 'doi-asserted-by': 'crossref', 'first-page': '681', 'DOI': '10.1038/s41591-020-0868-6', 'article-title': 'SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells ' 'together with innate immune genes', 'volume': '26', 'author': 'Sungnak', 'year': '2020', 'journal-title': 'Nat. Med.'}, { 'key': 'ref_11', 'doi-asserted-by': 'crossref', 'first-page': '813', 'DOI': '10.1128/JVI.02012-06', 'article-title': 'Lethal Infection of K18-hACE2 Mice Infected with Severe Acute ' 'Respiratory Syndrome Coronavirus', 'volume': '81', 'author': 'McCray', 'year': '2007', 'journal-title': 'J. Virol.'}, { 'key': 'ref_12', 'first-page': '603', 'article-title': 'COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 ' 'mice', 'volume': '589', 'author': 'Zheng', 'year': '2021', 'journal-title': 'Nat. Cell Biol.'}, { 'key': 'ref_13', 'doi-asserted-by': 'crossref', 'first-page': '807', 'DOI': '10.1016/j.jhep.2020.05.002', 'article-title': 'SARS-CoV-2 infection of the liver directly contributes to hepatic ' 'impairment in patients with COVID-19', 'volume': '73', 'author': 'Wang', 'year': '2020', 'journal-title': 'J. Hepatol.'}, { 'key': 'ref_14', 'doi-asserted-by': 'crossref', 'first-page': '14695', 'DOI': '10.1073/pnas.94.26.14695', 'article-title': 'Development of an epithelium-specific expression cassette with human ' 'DNA regulatory elements for transgene expression in lung airways', 'volume': '94', 'author': 'Chow', 'year': '1997', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': 'ref_15', 'doi-asserted-by': 'crossref', 'first-page': '359', 'DOI': '10.1006/mthe.2000.0135', 'article-title': 'Targeting Transgene Expression to Airway Epithelia and Submucosal ' 'Glands, Prominent Sites of Human CFTR Expression', 'volume': '2', 'author': 'Chow', 'year': '2000', 'journal-title': 'Mol. Ther.'}, { 'key': 'ref_16', 'doi-asserted-by': 'crossref', 'first-page': '830', 'DOI': '10.1038/s41586-020-2312-y', 'article-title': 'The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice', 'volume': '583', 'author': 'Bao', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_17', 'doi-asserted-by': 'crossref', 'first-page': '50', 'DOI': '10.1016/j.cell.2020.05.027', 'article-title': 'Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human ' 'Angiotensin-Converting Enzyme 2', 'volume': '182', 'author': 'Jiang', 'year': '2020', 'journal-title': 'Cell'}, { 'key': 'ref_18', 'doi-asserted-by': 'crossref', 'first-page': '1327', 'DOI': '10.1038/s41590-020-0778-2', 'article-title': 'SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung ' 'inflammation and impaired function', 'volume': '21', 'author': 'Winkler', 'year': '2020', 'journal-title': 'Nat. Immunol.'}, { 'key': 'ref_19', 'doi-asserted-by': 'crossref', 'first-page': '106039', 'DOI': '10.1016/j.envint.2020.106039', 'article-title': 'Aerosol transmission of SARS-CoV-2? Evidence, prevention and control', 'volume': '144', 'author': 'Tang', 'year': '2020', 'journal-title': 'Environ. Int.'}, { 'key': 'ref_20', 'doi-asserted-by': 'crossref', 'first-page': '465', 'DOI': '10.1038/s41586-020-2196-x', 'article-title': 'Virological assessment of hospitalized patients with COVID-2019', 'volume': '581', 'author': 'Corman', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_21', 'doi-asserted-by': 'crossref', 'first-page': '105794', 'DOI': '10.1016/j.envint.2020.105794', 'article-title': 'Estimation of airborne viral emission: Quanta emission rate of ' 'SARS-CoV-2 for infection risk assessment', 'volume': '141', 'author': 'Buonanno', 'year': '2020', 'journal-title': 'Environ. Int.'}, { 'key': 'ref_22', 'doi-asserted-by': 'crossref', 'first-page': '557', 'DOI': '10.1038/s41586-020-2271-3', 'article-title': 'Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals', 'volume': '582', 'author': 'Liu', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_23', 'doi-asserted-by': 'crossref', 'first-page': '107108', 'DOI': '10.1063/5.0027844', 'article-title': 'Aerosol persistence in relation to possible transmission of SARS-CoV-2', 'volume': '32', 'author': 'Smith', 'year': '2020', 'journal-title': 'Phys. Fluids'}, { 'key': 'ref_24', 'doi-asserted-by': 'crossref', 'first-page': '1648', 'DOI': '10.3389/fimmu.2020.01648', 'article-title': 'Cytokine Storm in COVID-19—Immunopathological Mechanisms, Clinical ' 'Considerations, and Therapeutic Approaches: The REPROGRAM Consortium ' 'Position Paper', 'volume': '11', 'author': 'Bhaskar', 'year': '2020', 'journal-title': 'Front. Immunol.'}, { 'key': 'ref_25', 'first-page': '1', 'article-title': 'Increased interleukin-6 and macrophage chemoattractant protein-1 are ' 'associated with respiratory failure in COVID-19', 'volume': '10', 'author': 'Holter', 'year': '2020', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_26', 'doi-asserted-by': 'crossref', 'first-page': '629193', 'DOI': '10.3389/fimmu.2021.629193', 'article-title': 'SARS-CoV-2 Causes a Different Cytokine Response Compared to Other ' 'Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients', 'volume': '12', 'author': 'Olbei', 'year': '2021', 'journal-title': 'Front. Immunol.'}, { 'key': 'ref_27', 'doi-asserted-by': 'crossref', 'first-page': '919', 'DOI': '10.1016/S1474-4422(20)30308-2', 'article-title': 'Neuropathology of patients with COVID-19 in Germany: A post-mortem case ' 'series', 'volume': '19', 'author': 'Matschke', 'year': '2020', 'journal-title': 'Lancet Neurol.'}, { 'key': 'ref_28', 'doi-asserted-by': 'crossref', 'first-page': '7', 'DOI': '10.1016/j.bbi.2020.12.031', 'article-title': 'Can SARS-CoV-2 infect the central nervous system via the olfactory bulb ' 'or the blood-brain barrier?', 'volume': '95', 'author': 'Burks', 'year': '2021', 'journal-title': 'Brain Behav. Immun.'}, { 'key': 'ref_29', 'doi-asserted-by': 'crossref', 'first-page': 'e20202135', 'DOI': '10.1084/jem.20202135', 'article-title': 'Neuroinvasion of SARS-CoV-2 in human and mouse brain', 'volume': '218', 'author': 'Song', 'year': '2021', 'journal-title': 'J. Exp. Med.'}, { 'key': 'ref_30', 'doi-asserted-by': 'crossref', 'first-page': '428', 'DOI': '10.1016/S2468-1253(20)30057-1', 'article-title': 'Liver injury in COVID-19: Management and challenges', 'volume': '5', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Lancet Gastroenterol. Hepatol.'}], 'container-title': 'Viruses', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1999-4915/13/8/1656/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 7, 17]], 'date-time': '2024-07-17T16:42:17Z', 'timestamp': 1721234537000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4915/13/8/1656'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 8, 20]]}, 'references-count': 30, 'journal-issue': {'issue': '8', 'published-online': {'date-parts': [[2021, 8]]}}, 'alternative-id': ['v13081656'], 'URL': 'http://dx.doi.org/10.3390/v13081656', 'relation': {}, 'ISSN': ['1999-4915'], 'subject': [], 'container-title-short': 'Viruses', 'published': {'date-parts': [[2021, 8, 20]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit