The innate immune response in SARS-CoV2 infection: focus on toll-like receptor 4 in severe disease outcomes

Maggi et al., Frontiers in Immunology, doi:10.3389/fimmu.2025.1658396, Oct 2025
Review article examining the role of TLR4 in SARS-CoV-2 infection and its therapeutic potential.
Maggi et al., 7 Oct 2025, peer-reviewed, 8 authors. Contact: lorenzo.moretta@opbg.net.
The innate immune response in SARS-CoV2 infection: focus on toll-like receptor 4 in severe disease outcomes
Enrico Maggi, Nadine Landolina, Francesca Romana Mariotti, Enrico Munari, Nicola Tumino, Paola Vacca, Bruno Azzarone, Lorenzo Moretta
Frontiers in Immunology, doi:10.3389/fimmu.2025.1658396
Innate immunity is the first line of defense against infections, including the detection and response to SARS-CoV-2. Cells of the innate system are usually activated within hours after pathogen exposure and do not generate conventional immunological memory. In this review, the current knowledge of the innate immune cells and of pattern-recognition receptors in sensing and responding to SARS-CoV-2 to mount a protective response has been shortly reviewed. Subsequently, the evasion strategies of the virus, as the inhibition of IFN-I/III production and autophagic response, counteracting the innate cell activity (including NK cells), have been briefly outlined. In the course of the infection, these strategies are also capable of rendering dysfunctional most innate cells, thus deeply interfering with the onset and maintenance of adaptive immunity. Possible mechanism(s) for the maintenance of dysfunctional innate immune response are also discussed. In this context, the importance of a rapid and robust activation of innate immunity through toll-like receptor (TLR) 4 as a key paradigm central to host defense against COVID-19 pathogenesis is also illustrated. We also discuss how the viral excess plus inflammatory signals upregulating TLR4 on innate cells may initiate a vicious loop which maintains and improves hyperinflammation, leading to the most critical outcomes. Targeting the TLR4 or its signaling pathway may be a promising therapeutic strategy, offering the dual benefits of viral suppression and decreasing inflammation.
Author contributions Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision. Generative AI statement The author(s) declare that no Generative AI was used in the creation of this manuscript. Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us. Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Abbate, Toldo, Marchetti, Kron, Van Tassell et al., Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease, Circ Res, doi:10.1161/CIRCRESAHA.120.315937
Abudunaibi, Liu, Guo, Zhao, Rui et al., A comparative study on the three calculation methods for reproduction numbers of COVID-19, Front Med, doi:10.3389/fmed.2022.1079842
Ahmadi, Bazargan, Elahi, Esmaeilzadeh, Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular approaches, Mol Immunol, doi:10.1016/j.molimm.2022.11.020
Akbar, Gilroy, Made, Simons, Schuurs-Hoeijmakers et al., Recurring SARS-CoV-2 variants: an update on post-pandemic, co-infections and immune response, Nanotheranostics, doi:10.7150/ntno.91910
Alhamlan, Aa, SARS-coV-2 variants: genetic insights, epidemiological tracking, and implications for vaccine strategies, Int J Mol Sci, doi:10.3390/ijms26031263
Alturaiki, Alkadi, Alamri, Awadalla, Alfaez et al., Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity, Int J Mol Sci, doi:10.1038/s41598-023-30474-6
Anastassopoulou, Davaris, Ferous, Siafakas, Boufidou et al., Differences in the clinical manifestations and host immune responses to SARS-coV-2 variants in children compared to adults, Lifestyle Genom, doi:10.3390/jcm13010128
Arcanjo, Logullo, Menezes, De, Carvalho Giangiarulo et al., The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19), Sci Rep, doi:10.1038/s41598-020-76781-0
Armstrong, Lange, Cesare, Matthews, Nirujogi et al., Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies, PloS One, doi:10.1371/journal.pone.0253364
Asaba, Ekabe, Ayuk, Gwanyama, Bitazar et al., Interplay of TLR4 and SARS-coV-2: unveiling the complex mechanisms of inflammation and severity in COVID-19 infections, J Inflammation Res, doi:10.2147/JIR.S474707
Ashraf, Abokor, Edwards, Waigi, Royfman et al., SARS-CoV-2, ACE2 expression, and systemic organ invasion, Physiol Genomics, doi:10.1152/physiolgenomics.00087.2020
Ayyubova, Gychka, Nikolaienko, Alghenaim, Teramoto et al., The role of furin in the pathogenesis of COVID-19-associated neurological disorders, Life, doi:10.3390/life14020279
Bai, Min, Chen, Mei, Deng et al., Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action, Proc Natl Acad Sci U S A, doi:10.1016/j.clim.2011.02.017
Bakaros, Voulgaridi, Paliatsa, Gatselis, Germanidis et al., Innate immune gene polymorphisms and COVID-19 prognosis, Viruses, doi:10.3390/v15091784
Barh, Tiwari, Gomes, Pinto, Andrade et al., SARS-coV-2 variants show a gradual declining pathogenicity and pro-inflammatory cytokine stimulation, an increasing antigenic and anti-inflammatory cytokine induction, and rising structural protein instability: A minimal number genome-based approach, Inflammation, doi:10.1007/s10753-022-01734-w
Behzadi, Chandran, Chakraborty, Bhattacharya, Saikumar et al., The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis, Int J Biol Macromol, doi:10.1016/j.ijbiomac.2024.137836
Bellamkonda, Lambe, Sawant, Nandi, Chakraborty et al., Immune response to SARS-coV-2 vaccines, Biomedicines, doi:10.3390/biomedicines10071464
Bhattacharya, Sharma, Mallick, Sharma, Lee et al., In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs, Infect Genet Evol, doi:10.1002/jmv.25987
Bortolotti, Gentili, Rizzo, Rotola, Rizzo, SARS-coV-2 spike 1 protein controls natural killer cell activation via the HLA-E/NKG2A pathway, Cells, doi:10.3390/cells9091975
Bouhaddou, Reuschl, Polacco, Thorne, Ummadi et al., SARS-CoV-2 variants evolve convergent strategies to remodel the host response, Cell, doi:10.1016/j.cell.2023.08.026
Brueggeman, Zhao, Schank, Yao, Moorman, Trained immunity: an overview and the impact on COVID-19, Front Immunol, doi:10.3389/fimmu.2022.837524
Buckner, Kardava, Merhebi, Narpala, Serebryannyy et al., Interval between prior SARS-CoV-2 infection and booster vaccination impacts magnitude and quality of antibody and B cell responses, Cell, doi:10.1016/j.cell.2022.09.032
Calabrese, Annunziata, Coppola, Pafundi, Guarino et al., ACE gene I/D polymorphism and acute pulmonary embolism in COVID19 pneumonia: A potential predisposing role, Front Med, doi:10.3389/fmed.2020.631148
Cao, Cai, Xiao, Rao, Chen et al., The architecture of the SARS-CoV-2 RNA genome inside virion, Nat Commun, doi:10.1038/s41467-021-22785-x
Carcaterra, Caruso, Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physiopathological theory, Med Hypotheses, doi:10.1016/j.mehy.2020.110412
Carnevale, Cammisotto, Bartimoccia, Nocella, Castellani et al., Toll-like receptor 4-dependent platelet-related thrombosis in SARS-coV-2 infection, Circ Res, doi:10.1161/CIRCRESAHA.122.321541
Chakraborty, Mallick, Bhattacharya, Byrareddy, SARS-CoV-2 Omicron Spike shows strong binding affinity and favourable interaction landscape with the TLR4/MD2 compared to other variants, J Genet Eng Biotechnol, doi:10.1016/j.jgeb.2023.100347
Chang, Yang, Deng, Chen, Yang et al., Depletion and dysfunction of dendritic cells: understanding SARS-coV-2 infection, Front Immunol, doi:10.3389/fimmu.2022.843342
Chen, Chen, Chen, Lan, Lin et al., Bioinformatics analysis of potential pathogenesis and risk genes of immunoinflammation-promoted renal injury in severe COVID-19, Cell Death Discov, doi:10.1038/s41420-023-01584-x
Chen, Long, Xu, Tan, Wang et al., Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients, Cell Mol Immunol, doi:10.1038/s41423-020-0492-x
Chen, Zheng, Sun, Li, Deng, ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress, Dev Cell, doi:10.1016/j.devcel.2021.10.006
Choi, Bowman, Jung, Autophagy during viral infection -a doubleedged sword, Nat Rev Microbiol, doi:10.1038/s41579-018-0003-6
Choudhury, Gupta, Panda, Rana, Mukherjee, Designing AbhiSCoVac -A single potential vaccine for all 'corona culprits': Immunoinformatics and immune simulation approaches, J Mol Liq, doi:10.1016/j.molliq.2022.118633
Choudhury, Mukherjee, Mukherjee, Padhi, Sanjukta et al., A multifunctional peptide from bacillus fermented soybean for effective inhibition of SARS-coV-2 S1 receptor binding domain and modulation of toll like receptor 4: A molecular docking study, Front Mol Biosci, doi:10.3389/fmolb.2021.636647
Cicco, Cicco, Racanelli, Vacca, Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment, Mediators Inflamm, doi:10.1155/2020/7527953
Cifaldi, Prencipe, Caiello, Bracaglia, Locatelli et al., Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome, Arthritis Rheumatol, doi:10.1002/art.39295
Cinquegrani, Spigoni, Iannozzi, Parello, Bonadonna et al., SARS-CoV-2 Spike protein is not pro-inflammatory in human primary macrophages: endotoxin contamination and lack of protein glycosylation as possible confounders, Cell Biol Toxicol, doi:10.1007/s10565-021-09693-y
Cox, Peacock, Harvey, Hughes, Wright et al., SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies, Nat Rev Microbiol, doi:10.1038/s41579-022-00809-7
Dagenais, Villalba-Guerrero, Olivier, Trained immunity: A "new" weapon in the fight against infectious diseases, Front Immunol, doi:10.3389/fimmu.2023.1147476
Das, Chakraborty, Bayry, Mukherjee, Comparative binding ability of human monoclonal antibodies against omicron variants of SARS-coV-2: an in silico investigation, Antibodies, doi:10.3390/antib12010017
Das, Chakraborty, Bayry, Mukherjee, In silico analyses on the comparative potential of therapeutic human monoclonal antibodies against newly emerged SARS-coV-2 variants bearing mutant spike protein, Front Immunol, doi:10.3389/fimmu.2021.782506
Das, Labala, Patra, Chattoraj, Mukherjee et al., Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARg-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line, Lett Drug Des Discov, doi:10.1002/ptr.7302
Demaria, Carvelli, Batista, Thibult, Morel et al., Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19, Cell Mol Immunol, doi:10.1038/s41423-020-0493-9
Diamond, Kanneganti, Innate immunity: the first line of defense against SARS-CoV-2, Nat Immunol, doi:10.1038/s41590-021-01091-0
Dunlop, Tee, mTOR and autophagy: a dynamic relationship governed by nutrients and energy, Semin Cell Dev Biol, doi:10.1016/j.semcdb.2014.08.006
Eagleton, Stokes, Fenton, Keenan, Therapeutic potential of long-acting opioids and opioid antagonists for SARS-CoV-2 infection, Br J Anaesth, doi:10.1016/j.bja.2021.08.022
Etter, Martins, Kulsvehagen, Possnecker, Duchemin et al., Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study, Nat Commun, doi:10.1038/s41467-022-34068-0
Fang, Wu, Huang, Wang, Ang et al., Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response, J Biol Chem, doi:10.1074/jbc.M111.266528
Fertig, Chitoiu, Marta, Ionescu, Cismasiu et al., Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination, Biomedicines, doi:10.3390/biomedicines10071538
Flores-Gonzalez, Chavez-Galan, Valencia, Roldan, Fricke-Galindo et al., Variant rs4986790 of toll-like receptor 4 affects the signaling and induces cell dysfunction in patients with severe COVID-19, Int J Infect Dis, doi:10.1016/j.ijid.2023.11.032
Fontes-Dantas, Fernandes, Gutman, Lima, Antonio et al., SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice, Front Immunol, doi:10.1093/jimmun/vkaf033
Frank, Nguyen, Ball, Hopkins, Kelley et al., SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties, Brain Behav Immun, doi:10.1016/j.bbi.2021.12.007
Fraser, Cepinskas, Slessarev, Martin, Daley et al., Inflammation profiling of critically ill coronavirus disease 2019 patients, Crit Care Explor, doi:10.1097/CCE.0000000000000144
Freitas, Durie, Murray, Longo, Miller et al., Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-coV-2 papain-like protease, ACS Infect Dis, doi:10.1021/acsinfecdis.0c00168
Frolova, Palchevska, Lukash, Dominguez, Britt et al., Acquisition of furin cleavage site and further SARS-coV-2 evolution change the mechanisms of viral entry, infection spread, and cell signaling, J Virol, doi:10.1128/jvi.00753-22
Gallardo-Zapata, Maldonado-Bernal, Maggi, Canonica, Moretta, COVID-19: Unanswered questions on immune response and pathogenesis, J Allergy Clin Immunol, doi:10.1016/j.jaci.2020.05.001
Gambari, Finotti, Interplay of TLR4 and SARS-coV-2: possible involvement of microRNAs, Letter. J Inflammation Res, doi:10.2147/JIR.S501862
Garcia, Kokkinou, Garcia, Parrot, Medina et al., Severe COVID-19 patients exhibit an ILC2 NKG2D(+) population in their impaired ILC compartment, Clin Transl Immunol, doi:10.1038/s41423-020-00596-2
Grassi, Notari, Gili, Bordoni, Casetti et al., Myeloid-derived suppressor cells in COVID-19: the paradox of good, Front Immunol, doi:10.3389/fimmu.2022.842949
Gugliandolo, Chiricosta, Calcaterra, Biasin, Cappelletti et al., SARS-coV-2 infected pediatric cerebral cortical neurons: transcriptomic analysis and potential role of toll-like receptors in pathogenesis, Int J Mol Sci, doi:10.3390/ijms22158059
Guilliams, Mildner, Yona, Developmental and functional heterogeneity of monocytes, Immunity, doi:10.1016/j.immuni.2018.10.005
Guo, Zhao, Li, Liu, Yang et al., Vascular endothelial-derived SPARCL1 exacerbates viral pneumonia through pro-inflammatory macrophage activation, Cell Host Microbe, doi:10.1038/s41467-024-48589-3
Han, Zheng, Deng, Nan, Xiao et al., SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy, J Med Virol, doi:10.1002/jmv.27965
Hashimoto, Kamphorst, Im, Kissick, Pillai et al., CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions, Rev Med, doi:10.1146/annurev-med-012017-043208
Hayn, Hirschenberger, Koepke, Nchioua, Straub et al., Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities, Cell Rep, doi:10.1016/j.celrep.2021.109126
He, Klionsky, Regulation mechanisms and signaling pathways of autophagy, Annu Rev Genet, doi:10.1146/annurev-genet-102808-114910
Hoffmann, Kleine-Weber, Pohlmann, A multibasic cleavage site in the spike protein of SARS-coV-2 is essential for infection of human lung cells, Mol Cell, doi:10.1016/j.molcel.2020.04.022
Hou, Okuda, Edwards, Martinez, Asakura et al., SARS-coV-2 reverse genetics reveals a variable infection gradient in the respiratory tract, Cell, doi:10.1016/j.cell.2020.05.042
Hou, Wang, Wang, Wang, Yu et al., The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication, Autophagy, doi:10.1080/15548627.2022.2084686
Houssen, Elmaria, Badr, El-Mahdy, Ghannam et al., Serum soluble toll-like receptor 4 and risk for clinical severity in COVID-19 patients, Pneumonia, doi:10.1186/s41479-023-00121-9
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Huang, Ye, Han, Kong, Shan et al., LRR and PYD domains-containing protein 3 inflammasome is activated and inhibited by berberine via toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappaB pathway, in phorbol 12-myristate 13-acetate-induced macrophages, Mol Med Rep, doi:10.3892/mmr.2017.8189
Hui, Zhang, Cao, Huang, Zhao et al., SARS-CoV-2 promote autophagy to suppress type I interferon response, Signal Transduct Target Ther, doi:10.1038/s41392-021-00574-8
Iniguez, Perez-Matute, Villoslada-Blanco, Recio-Fernandez, Ezquerro-Perez et al., ACE gene variants rise the risk of severe COVID-19 in patients with hypertension, dyslipidemia or diabetes: A spanish pilot study, Front Endocrinol, doi:10.1038/s41440-020-00560-7
Ito, Piantham, Nishiura, Estimating relative generation times and reproduction numbers of Omicron BA.1 and BA.2 with respect to Delta variant in Denmark, Math Biosci Eng, doi:10.3934/mbe.2022418
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat Rev Mol Cell Biol, doi:10.1038/s41580-021-00418-x
Karimizadeh, Dowran, Mokhtari-Azad, Nz, The reproduction rate of severe acute respiratory syndrome coronavirus 2 different variants recently circulated in human: a narrative review, Eur J Med Res, doi:10.1186/s40001-023-01047-0
Karki, Kanneganti, Innate immunity, cytokine storm, and inflammatory cell death in COVID-19, J Transl Med, doi:10.1186/s12967-022-03767-z
Karki, Kanneganti, The 'cytokine storm': molecular mechanisms and therapeutic prospects, Trends Immunol, doi:10.1016/j.it.2021.06.001
Karki, Lee, Mall, Pandian, Wang et al., ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection, Sci Immunol, doi:10.1126/sciimmunol.abo6294
Karki, Sharma, Tuladhar, Williams, Zalduondo et al., Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-coV-2 infection and cytokine shock syndromes, Cell, doi:10.1016/j.cell.2020.11.025
Kawai, Akira, Kircheis, In silico analyses indicate a lower potency for dimerization of TLR4/ MD-2 as the reason for the lower pathogenicity of omicron compared to wild-type virus and earlier SARS-coV-2 variants, Int J Mol Sci, doi:10.3390/ijms25105451
Kehrer, Cupic, Ye, Yildiz, Bouhaddou et al., Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis, Cell Host Microbe, doi:10.1016/j.chom.2023.08.003
Khan, Shen, Bernstein, Giani, Eriguchi et al., Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils, Blood, doi:10.1182/blood-2016-11-752006
Knoll, Schultze, Schulte-Schrepping, Monocytes and macrophages in COVID-19, Front Immunol, doi:10.3389/fimmu.2021.720109
Koepke, Hirschenberger, Hayn, Kirchhoff, Sparrer, Manipulation of autophagy by SARS-CoV-2 proteins, Autophagy, doi:10.1080/15548627.2021.1953847
Koupenova, Corkrey, Vitseva, Tanriverdi, Somasundaran et al., SARS-coV-2 initiates programmed cell death in platelets, Circ Res, doi:10.1161/CIRCRESAHA.121.319117
Kramer, Knoll, Bonaguro, Tovinh, Raabe et al., Early IFN-alpha signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19, Immunity, doi:10.1016/j.immuni.2021.09.002
Kronvall, Nordenfelt, On the history of human coronaviruses, APMIS, doi:10.1111/apm.13109
Kumar, Javed, Mudd, Pallikkuth, Lidke et al., Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes, Cell, doi:10.1016/j.cell.2021.10.017
Kuzmich, Sivak, Chubarev, Porozov, Savateeva-Lyubimova, TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis, Vaccines, doi:10.3390/vaccines5040034
Kvedaraite, Hertwig, Sinha, Ponzetta, Myrberg et al., Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients, Proc Natl Acad Sci U S A, doi:10.1016/j.celrep.2021.108863
Landolina, Ricci, Veneziani, Alicata, Mariotti et al., TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells, Front Immunol, doi:10.3389/fimmu.2024.1368946
Lee, Koepke, Kirchhoff, Sparrer, Interferon antagonists encoded by SARS-CoV-2 at a glance, Med Microbiol Immunol, doi:10.1007/s00430-022-00734-9
Leentjens, Van Haaps, Wessels, Schutgens, Middeldorp, COVID-19-associated coagulopathy and antithrombotic agents-lessons after 1 year, Lancet Haematol, doi:10.1016/S2352-3026(21)00105-8
Len, Koh, Chan, The functional roles of MDSCs in severe COVID-19 pathogenesis, Viruses, doi:10.3390/v16010027
Leon, Michelson, Olejnik, Chowdhary, Oh et al., A virusspecific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immuneepithelial interface, Proc Natl Acad Sci U.S.A, doi:10.1073/pnas.2116853118
Levine, Mizushima, Virgin, Autophagy in immunity and inflammation, Nature, doi:10.1038/nature09782
Li, Ayyanathan, Dittmar, Miller, Tapescu et al., SARS-CoV-2 ORF6 protein does not antagonize interferon signaling in respiratory epithelial Calu-3 cells during infection, mBio, doi:10.1128/mbio.01194-23
Li, Ferretti, Ying, Descamps, Lee et al., Pharmacological activation of STING blocks SARS-CoV-2 infection, Sci Immunol, doi:10.1126/sciimmunol.abi9007
Li, Hou, Ma, Wang, Wang et al., SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy, Cell Mol Immunol, doi:10.1038/s41423-021-00807-4
Li, Li, Liang, Yu, Zhai et al., SARS-CoV-2 ORF7a blocked autophagy flux by intervening in the fusion between autophagosome and lysosome to promote viral infection and pathogenesis, J Med Virol, doi:10.1002/jmv.29200
Li, Liu, Duo, Wu, Jiang et al., Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients, Cell Commun Signal, doi:10.1186/s12964-022-01010-2
Li, Wen, Guo, Yang, Yang, Molecular mechanism of SARS-coVs orf6 targeting the rae1-nup98 complex to compete with mRNA nuclear export, Front Mol Biosci, doi:10.3389/fmolb.2021.813248
Liang, Lindgren, Lin, Thompson, Ols et al., Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques, Mol Ther, doi:10.1016/j.ymthe.2017.08.006
Liu, Jesus, Marrero, Yang, Ramsey et al., Activated STING in a vascular and pulmonary syndrome, N Engl J Med, doi:10.1056/NEJMoa1312625
Liu, Lee, Parker, Acharya, Chiang et al., ISG15dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papainlike protease to evade host innate immunity, Nat Microbiol, doi:10.1038/s41564-021-00884-1
Liu, Yang, Yu, Lian, Deng et al., Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments, Front Pharmacol, doi:10.2217/fvl-2021-0249
Lokanuwatsatien, Satdhabudha, Tangsathapornpong, Bunjoungmanee, Sinlapamongkolkul et al., Prevalence and associating factors of long COVID in pediatric patients during the Delta and the Omicron variants, Front Pediatr, doi:10.3389/fped.2023.1127582
Lu, Liu, Zhao, Castro, Laurent-Rolle et al., SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2, Immunity, doi:10.1016/j.immuni.2021.05.006
Lukassen, Chua, Trefzer, Kahn, Schneider et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells, EMBO J, doi:10.15252/embj.20105114
Ma, Ma, Yang, Wu, Wang et al., Diagnostic biomarkers and immune infiltration profiles common to COVID-19, acute myocardial infarction and acute ischaemic stroke using bioinformatics methods and machine learning, BMC Neurol, doi:10.1016/j.genrep.2021.101246
Maggi, Azzarone, Canonica, Moretta, What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders, Allergy, doi:10.1111/all.15112
Mahmoudi, Alavizadeh, Hosseini, Meidany, Doagooyan et al., Harnessing aptamers against COVID-19: A therapeutic strategy, Drug Discov Today, doi:10.1016/j.drudis.2023.103663
Malireddi, Sharma, Kanneganti, Innate immunity in protection and pathogenesis during coronavirus infections and COVID-19, Annu Rev Immunol, doi:10.1146/annurev-immunol-083122-043545
Manfrini, Notarbartolo, Grifantini, Pesce, SARS-coV-2: A glance at the innate immune response elicited by infection and vaccination, Antibodies, doi:10.3390/antib13010013
Mani, Kaur, Jakhar, Kumari, Sonar et al., Targeting DPP4-RBD interactions by sitagliptin and linagliptin delivers a potential host-directed therapy against pan-SARS-CoV-2 infections, Int J Biol Macromol, doi:10.1016/j.ijbiomac.2023.125444
Mapelli, Salvioni, Mattavelli, Banfi, Ghilardi et al., Surfactant-derived protein type B: a new biomarker linked to respiratory failure and lung damage in mild to moderate SARS-CoV-2 pneumonia, ERJ Open Res, doi:10.1183/23120541.00301-2024
Marais, Semaan, Charbel, Barreault, Travert, Myeloid phenotypes in severe COVID-19 predict secondary infection and mortality: a pilot study, Ann Intensive Care, doi:10.1186/s13613-021-00896-4
Mazzoni, Salvati, Maggi, Capone, Vanni et al., Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent, J Clin Invest, doi:10.3389/fimmu.2014.00461
Mellett, Khader, S100A8/A9 in COVID-19 pathogenesis: Impact on clinical outcomes, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2021.10.004
Menezes, Veiga, Martins De Lima, Kubo Ariga, Barbeiro et al., Lower peripheral blood Toll-like receptor 3 expression is associated with an unfavorable outcome in severe COVID-19 patients, Sci Rep, doi:10.1038/s41598-021-94624-4
Miao, Zhao, Li, Chen, Shi, ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation, Dev Cell, doi:10.1016/j.devcel.2020.12.010
Mohamud, Xue, Liu, Ng, Bahreyni, The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2020.12.091
Monnet, Choy, Mcinnes, Kobakhidze, De Graaf et al., Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a phase II study, Ann Rheum Dis, doi:10.1136/annrheumdis-2019-216487
Mukherjee, Bayry, The yin and yang of TLR4 in COVID-19, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2024.10.001
Musuuza, Watson, Parmasad, Putman-Buehler, Christensen et al., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection, PloS One, doi:10.1128/mBio.00638-15
Nchioua, Schundner, Klute, Koepke, Hirschenberger et al., Reduced replication but increased interferon resistance of SARS-CoV-2 Omicron BA.1, Life Sci Alliance, doi:10.26508/lsa.202201745
Nejat, Torshizi, Najafi, S protein, ACE2 and host cell proteases in SARS-coV-2 cell entry and infectivity; is soluble ACE2 a two blade sword? A narrative review, Vaccines, doi:10.3390/vaccines11020204
Nguyen, Rowntree, Chua, Thwaites, Kedzierska, Defining the balance between optimal immunity and immunopathology in influenza virus infection, Nat Rev Immunol, doi:10.1038/s41577-024-01029-1
Niu, Liang, Chen, Zhu, Zhou et al., SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells to produce more IL-2, Front Immunol, doi:10.3389/fimmu.2024.1444643
Ogata, Cheng, Desjardins, Senussi, Sherman et al., Circulating severe acute respiratory syndrome coronavirus 2 (SARS-coV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients, Clin Infect Dis, doi:10.1093/cid/ciab465
Olejnik, Hume, Muhlberger, Toll-like receptor 4 in acute viral infection: Too much of a good thing, PloS Pathog, doi:10.1371/journal.ppat.1007390
Osman, Faridi, Sligl, Shabani-Rad, Dharmani-Khan et al., Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19, Blood Adv, doi:10.1182/bloodadvances.2020002650
Ouranidis, Vavilis, Mandala, Davidopoulou, Stamoula et al., mRNA therapeutic modalities design, formulation and manufacturing under pharma 4.0 principles, Biomedicines, doi:10.3390/biomedicines10010050
Passos, Heimfarth, Monteiro, Correa, Moura et al., Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity, Int Immunopharmacol, doi:10.1016/j.intimp.2021.108502
Patra, Das, Mukherjee, Pineda, Kalinina et al., Mechanism of TLR4mediated anti-inflammatory response induced by exopolysaccharide from the probiotic bacillus subtilis, J Med Virol, doi:10.4049/jimmunol.2200855
Pedicillo, Stefano, Zamparese, Barile, Meccariello et al., The role of toll-like receptor-4 in macrophage imbalance in lethal COVID-19 lung disease, and its correlation with galectin-3, Int J Mol Sci, doi:10.3390/ijms241713259
Peng, Wang, Wang-Kan, Idorn, Kjaer et al., Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1, EMBO Rep, doi:10.15252/embr.202255839
Planas, Veyer, Baidaliuk, Staropoli, Guivel-Benhassine et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization, Nature, doi:10.1038/s41586-021-03777-9
Qu, Wang, Zhu, Wang, Hu, ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication, Front Cell Dev Biol, doi:10.3389/fcell.2021.716208
Radermecker, Detrembleur, Guiot, Cavalier, Henket et al., Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs, Curr Opin Hematol, doi:10.1007/s00018-024-05157-8
Retnakumar, Chauvin, Bayry, Pieris, Urlaub et al., The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases, Front Cell Infect Microbiol, doi:10.3389/fcimb.2023.1266790
Reyes, Filbin, Bhattacharyya, Sonny, Mehta et al., Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro, Sci Transl Med, doi:10.3389/fimmu.2022.894543
Roltgen, Nielsen, Silva, Younes, Zaslavsky et al., Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination, Cell, doi:10.1016/j.cell.2022.01.018
Rowley, Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children, Nat Rev Immunol, doi:10.1038/s41577-020-0367-5
Russell, Lone, Baillie, Choudhury, Mukherjee, Taming the storm in the heart: exploring different therapeutic choices against myocardial inflammation in COVID-19, Recent Adv Antiinfect Drug Discov, doi:10.2174/2772434416666210616124505
Sacchi, Giannessi, Sabatini, Percario, Affabris, SARS-coV-2 evasion of the interferon system: can we restore its effectiveness?, Int J Mol Sci, doi:10.3390/ijms24119353
Saichi, Ladjemi, Korniotis, Rousseau, Hamou et al., Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity, Nat Cell Biol, doi:10.1038/s41556-021-00681-2
Samsudin, Raghuvamsi, Petruk, Puthia, Petrlova et al., SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade, J Mol Cell Biol, doi:10.1093/jmcb/mjac058
Schifanella, Anderson, Wieking, Southern, Antinori et al., The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-coV-2 and necroptosis, pyroptosis, and PANoptosis, J Infect Dis, doi:10.1093/infdis/jiad056
Schultze, Aschenbrenner, COVID-19 and the human innate immune system, Cell, doi:10.1016/j.cell.2021.02.029
Sefik, Qu, Junqueira, Kaffe, Mirza et al., Inflammasome activation in infected macrophages drives COVID-19 pathology, bioRxiv, doi:10.1101/2021.09.27.461948
Shamseldin, Read, Hall, Tuazon, Brown et al., The adjuvant BcfA activates antigen presenting cells through TLR4 and supports T(FH) and T(H)1 while attenuating T(H)2 gene programming, Front Immunol, doi:10.3389/fimmu.2024.1439418
Shao, Liu, Hu, Chen, Interplay between autophagy and apoptosis in human viral pathogenesis, Virus Res, doi:10.1016/j.virusres.2025.199611
Shi, Nabar, Huang, Kehrl, SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes, Cell Death Discov, doi:10.1038/s41420-019-0181-7
Shin, Mukherjee, Grewe, Bojkova, Baek et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity, Nature, doi:10.1038/s41586-020-2601-5
Shinde, Bhikha, Hoosain, Archary, Bhorat et al., LPS-RS attenuation of lipopolysaccharide-induced acute lung injury involves NF-kB inhibition, Can J Physiol Pharmacol, doi:10.1139/cjpp-2015-0219
Shirey, Lai, Scott, Lipsky, Mistry et al., The TLR4 antagonist Eritoran protects mice from lethal influenza infection, Nature, doi:10.1038/nature12118
Silva, Wanderley, Veras, Sonego, Nascimento et al., Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation, Annu Rev Cell Dev Biol, doi:10.1146/annurev-cellbio-020520-111016
Silva-Aguiar, Teixeira, Peruchetti, Peres, Alves et al., Toll-like receptor 4 polymorphisms (896A/G and 1196C/T) as an indicator of COVID-19 severity in a convenience sample of Egyptian patients, Biochim Biophys Acta Mol Basis Dis, doi:10.2147/JIR.S343246
Silverstein, Wang, Manickas-Hill, Carbone, Dauphin et al., Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection, Elife, doi:10.7554/eLife.74681
Simpson, Pang, Weir, Kong, Fritsch et al., Interferongamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway, Immunity, doi:10.1016/j.immuni.2022.01.003
Singh, Chaubey, Chen, Suravajhala, Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis, Am J Physiol Cell Physiol, doi:10.1152/ajpcell.00224.2020
Sohn, Lee, Kim, Cheon, Jeong et al., COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis, J Korean Med Sci, doi:10.1007/s00109-023-02283-x
Stegeman, Kourko, Amsden, Delano, Mamatis et al., RNA viruses, toll-like receptors, and cytokines: the perfect storm?, J Innate Immun, doi:10.1159/000543608
Stewart, Lu, Keefe, Valpadashi, Cruz-Zaragoza et al., The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity, iScience, doi:10.1016/j.isci.2023.108080
Su, Shen, Hu, Chen, Cheng et al., SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function, J Med Virol, doi:10.1002/jmv.28175
Su, Yu, Zhou, SARS-coV-2 ORF3a induces incomplete autophagy via the unfolded protein response, Viruses, doi:10.3390/v13122467
Taylor, Pearson, Das, Sardell, Chocian et al., Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis, J Transl Med, doi:10.3390/biomedicines11020451
Teixeira, Dorneles, Filho, Da Silva, Schipper et al., Increased LPS levels coexist with systemic inflammation and result in monocyte activation in severe COVID-19 patients, Int Immunopharmacol, doi:10.1016/j.intimp.2021.108125
Thoms, Buschauer, Ameismeier, Koepke, Denk et al., Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science, doi:10.1126/science.abc8665
Tlatelpa-Romero, Cazares-Ordonez, Oyarzabal, Vazquez-De-Lara, The role of pulmonary surfactant phospholipids in fibrotic lung diseases, Int J Mol Sci, doi:10.3390/ijms24010326
Troyano-Hernaez, Reinosa, Holguin, Evolution of SARS-coV-2 envelope, membrane, nucleocapsid, and spike structural proteins from the beginning of the pandemic to september 2020: A global and regional approach by epidemiological week, Viruses, doi:10.3390/v13020243
Tsai, Lin, Huang, Lin, Tsai et al., The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in alpha-granules trafficking, J Microbiol Immunol Infect, doi:10.1016/j.jmii.2020.03.022
Unterberger, Terrazzini, Sacre, Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression, Hum Immunol, doi:10.1016/j.humimm.2025.111249
Valle, Kim-Schulze, Huang, Beckmann, Nirenberg et al., An inflammatory cytokine signature predicts COVID-19 severity and survival, Nat Med, doi:10.1038/s41591-020-1051-9
Varga, Flammer, Steiger, Haberecker, Andermatt et al., Endothelial cell infection and endotheliitis in COVID-19, Lancet, doi:10.1016/S0140-6736(20)30937-5
Veras, Pontelli, Silva, Toller-Kawahisa, De Lima et al., SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology, J Exp Med, doi:10.1084/jem.20201129
Violi, Cammisotto, Bartimoccia, Pignatelli, Carnevale et al., Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease, Nat Rev Cardiol, doi:10.1038/s41569-022-00737-2
Vito, Calcaterra, Coianiz, Terzoli, Voza et al., Natural killer cells in SARS-coV-2 infection: pathophysiology and therapeutic implications, Cell Host Microbe, doi:10.1126/sciimmunol.abd6832
Wang, Yang, Zhou, Sun, Liu et al., COVID-19 severity correlates with weaker T-cell immunity, hypercytokinemia, and lung epithelium injury, Am J Respir Crit Care Med, doi:10.1164/rccm.202005-1701LE
Watson, Madsen, Clark, Voelker, Numata et al., Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure, Eur Respir Rev, doi:10.1183/16000617.0077-2021
Wauters, Van Mol, Garg, Jansen, Van Herck et al., Discriminating mild from critical COVID-19 by innate and adaptive immune singlecell profiling of bronchoalveolar lavages, Cell Res, doi:10.1038/s41422-020-00455-9
Wesselborg, Stork, Autophagy signal transduction by ATG proteins: from hierarchies to networks, Cell Mol Life Sci, doi:10.1007/s00018-015-2034-8
Wilk, Rustagi, Zhao, Roque, Martinez-Colon et al., A single-cell atlas of the peripheral immune response in patients with severe COVID-19, Nat Med, doi:10.1038/s41591-020-0944-y
Wu, Peng, Huang, Ding, Wang et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host Microbe, doi:10.1016/j.chom.2020.02.001
Wu, Zhao, Yu, Chen, Song, A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Xue, Jiang, Zhao, Le, Li, Elevated frequencies of CD14(+)HLA-DR (lo/neg) MDSCs in COVID-19 patients, Aging, doi:10.18632/aging.202571
Yamada, Takaoka, Innate immune recognition against SARS-CoV-2, Inflammation Regen, doi:10.1186/s41232-023-00259-5
Yang, Chen, Bian, Tu, Xing et al., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease, J Gen Virol, doi:10.1099/vir.0.059014-0
Yang, Wang, Huang, Huang, Ren et al., COVID-19 and toll-like receptor 4 (TLR4): SARS-coV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation, Mediators Inflamm, doi:10.1155/2021/8874339
Yang, Wang, Ju, Ragab, Lundback et al., MD-2 is required for disulfide HMGB1-dependent TLR4 signaling, J Exp Med, doi:10.1084/jem.20141318
Ye, Wang, Mao, The pathogenesis and treatment of the;Cytokine Storm' in COVID-19, J Infect, doi:10.1016/j.jinf.2020.03.037
Yildirim Arslan, Avcu, Bal, Arslan, Ozkinay et al., Evaluation of post-COVID symptoms of the SARS-CoV-2 Delta and Omicron variants in children: A prospective study, Eur J Pediatr, doi:10.1007/s00431-023-05134-6
Yousefbeigi, Marsusi, Zr, Arsentieva, Liubimova et al., Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study, J Biomol Struct Dyn, doi:10.3390/ijms232214146
Yu, Ge, Li, Zhang, Xu et al., Interaction between coronaviruses and the autophagic response, Front Cell Infect Microbiol, doi:10.3389/fcimb.2024.1457617
Yu, Liu, Ou, Li, Liu et al., The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2, mBio, doi:10.1128/mbio.01088-24
Zacher, Schonfelder, Rohn, Siffert, Mohlendick, The single nucleotide polymorphism rs4986790 (c.896A>G) in the gene TLR4 as a protective factor in corona virus disease 2019 (COVID-19), Front Immunol, doi:10.3389/fimmu.2024.1355193
Zhang, Liu, Wang, Yang, Li et al., SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19, J Hematol Oncol, doi:10.1186/s13045-020-00954-7
Zhang, Sun, Pei, Mao, Zhao et al., The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes, Cell Discov, doi:10.1038/s41421-021-00268-z
Zhao, Kuang, Li, Zhu, Jia et al., SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19, J Mol Cell Biol, doi:10.1093/jmcb/mjaa067
Zheng, Gao, Wang, Song, Liu et al., Functional exhaustion of antiviral lymphocytes in COVID-19 patients, Cell Mol Immunol, doi:10.1038/s41423-020-0402-2
Zhou, Hu, Castro-Gonzalez, Bidirectional interplay between SARS-CoV-2 and autophagy, mBio, doi:10.1128/mbio.01020-23
Zhou, Wang, Zhang, Effect of TLR4/MyD88 signaling pathway on sepsis-associated acute respiratory distress syndrome in rats, via regulation of macrophage activation and inflammatory response, Exp Ther Med, doi:10.3892/etm.2018.5815
Zuo, Yalavarthi, Shi, Gockman, Zuo et al., Neutrophil extracellular traps in COVID-19, JCI Insight, doi:10.1172/jci.insight.138999
DOI record: { "DOI": "10.3389/fimmu.2025.1658396", "ISSN": [ "1664-3224" ], "URL": "http://dx.doi.org/10.3389/fimmu.2025.1658396", "abstract": "<jats:p>Innate immunity is the first line of defense against infections, including the detection and response to SARS-CoV-2. Cells of the innate system are usually activated within hours after pathogen exposure and do not generate conventional immunological memory. In this review, the current knowledge of the innate immune cells and of pattern-recognition receptors in sensing and responding to SARS-CoV-2 to mount a protective response has been shortly reviewed. Subsequently, the evasion strategies of the virus, as the inhibition of IFN-I/III production and autophagic response, counteracting the innate cell activity (including NK cells), have been briefly outlined. In the course of the infection, these strategies are also capable of rendering dysfunctional most innate cells, thus deeply interfering with the onset and maintenance of adaptive immunity. Possible mechanism(s) for the maintenance of dysfunctional innate immune response are also discussed. In this context, the importance of a rapid and robust activation of innate immunity through toll-like receptor (TLR) 4 as a key paradigm central to host defense against COVID-19 pathogenesis is also illustrated. We also discuss how the viral excess plus inflammatory signals upregulating TLR4 on innate cells may initiate a vicious loop which maintains and improves hyperinflammation, leading to the most critical outcomes. Targeting the TLR4 or its signaling pathway may be a promising therapeutic strategy, offering the dual benefits of viral suppression and decreasing inflammation.</jats:p>", "alternative-id": [ "10.3389/fimmu.2025.1658396" ], "article-number": "1658396", "author": [ { "affiliation": [], "family": "Maggi", "given": "Enrico", "sequence": "first" }, { "affiliation": [], "family": "Landolina", "given": "Nadine", "sequence": "additional" }, { "affiliation": [], "family": "Mariotti", "given": "Francesca Romana", "sequence": "additional" }, { "affiliation": [], "family": "Munari", "given": "Enrico", "sequence": "additional" }, { "affiliation": [], "family": "Tumino", "given": "Nicola", "sequence": "additional" }, { "affiliation": [], "family": "Vacca", "given": "Paola", "sequence": "additional" }, { "affiliation": [], "family": "Azzarone", "given": "Bruno", "sequence": "additional" }, { "affiliation": [], "family": "Moretta", "given": "Lorenzo", "sequence": "additional" } ], "container-title": "Frontiers in Immunology", "container-title-short": "Front. Immunol.", "content-domain": { "crossmark-restriction": true, "domain": [ "frontiersin.org" ] }, "created": { "date-parts": [ [ 2025, 10, 7 ] ], "date-time": "2025-10-07T05:35:00Z", "timestamp": 1759815300000 }, "deposited": { "date-parts": [ [ 2025, 10, 7 ] ], "date-time": "2025-10-07T05:35:02Z", "timestamp": 1759815302000 }, "indexed": { "date-parts": [ [ 2026, 1, 6 ] ], "date-time": "2026-01-06T13:57:00Z", "timestamp": 1767707820769, "version": "build-2065373602" }, "is-referenced-by-count": 1, "issued": { "date-parts": [ [ 2025, 10, 7 ] ] }, "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 10, 7 ] ], "date-time": "2025-10-07T00:00:00Z", "timestamp": 1759795200000 } } ], "link": [ { "URL": "https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658396/full", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1965", "original-title": [], "prefix": "10.3389", "published": { "date-parts": [ [ 2025, 10, 7 ] ] }, "published-online": { "date-parts": [ [ 2025, 10, 7 ] ] }, "publisher": "Frontiers Media SA", "reference": [ { "DOI": "10.1111/apm.13109", "article-title": "On the history of human coronaviruses", "author": "Kronvall", "doi-asserted-by": "publisher", "journal-title": "APMIS", "key": "B1", "volume": "129", "year": "2021" }, { "DOI": "10.1038/s41586-020-2008-3", "article-title": "A new coronavirus associated with human respiratory disease in China", "author": "Wu", "doi-asserted-by": "publisher", "journal-title": "Nature", "key": "B2", "volume": "579", "year": "2020" }, { "DOI": "10.1016/j.jinf.2020.03.037", "article-title": "The pathogenesis and treatment of the;Cytokine Storm’ in COVID-19", "author": "Ye", "doi-asserted-by": "publisher", "journal-title": "J Infect", "key": "B3", "volume": "80", "year": "2020" }, { "DOI": "10.1016/S0140-6736(20)30183-5", "article-title": "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China", "author": "Huang", "doi-asserted-by": "publisher", "first-page": "497", "journal-title": "Lancet", "key": "B4", "volume": "395", "year": "2020" }, { "DOI": "10.1038/s41591-020-1051-9", "article-title": "An inflammatory cytokine signature predicts COVID-19 severity and survival", "author": "Del Valle", "doi-asserted-by": "publisher", "journal-title": "Nat Med", "key": "B5", "volume": "26", "year": "2020" }, { "DOI": "10.1016/j.it.2021.06.001", "article-title": "The ‘cytokine storm’: molecular mechanisms and therapeutic prospects", "author": "Karki", "doi-asserted-by": "publisher", "first-page": "681", "journal-title": "Trends Immunol", "key": "B6", "volume": "42", "year": "2021" }, { "DOI": "10.3389/fimmu.2023.1147476", "article-title": "Trained immunity: A “new” weapon in the fight against infectious diseases", "author": "Dagenais", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B7", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s41467-021-22785-x", "article-title": "The architecture of the SARS-CoV-2 RNA genome inside virion", "author": "Cao", "doi-asserted-by": "publisher", "first-page": "3917", "journal-title": "Nat Commun", "key": "B8", "volume": "12", "year": "2021" }, { "DOI": "10.3390/v13020243", "article-title": "Evolution of SARS-coV-2 envelope, membrane, nucleocapsid, and spike structural proteins from the beginning of the pandemic to september 2020: A global and regional approach by epidemiological week", "author": "Troyano-Hernaez", "doi-asserted-by": "publisher", "journal-title": "Viruses", "key": "B9", "volume": "13", "year": "2021" }, { "DOI": "10.1038/s41580-021-00418-x", "article-title": "Mechanisms of SARS-CoV-2 entry into cells", "author": "Jackson", "doi-asserted-by": "publisher", "first-page": "3", "journal-title": "Nat Rev Mol Cell Biol", "key": "B10", "volume": "23", "year": "2022" }, { "DOI": "10.1016/j.molcel.2020.04.022", "article-title": "A multibasic cleavage site in the spike protein of SARS-coV-2 is essential for infection of human lung cells", "author": "Hoffmann", "doi-asserted-by": "publisher", "first-page": "779", "journal-title": "Mol Cell", "key": "B11", "volume": "78", "year": "2020" }, { "DOI": "10.3390/vaccines11020204", "article-title": "S protein, ACE2 and host cell proteases in SARS-coV-2 cell entry and infectivity; is soluble ACE2 a two blade sword? A narrative review", "author": "Nejat", "doi-asserted-by": "publisher", "journal-title": "Vaccines (Basel)", "key": "B12", "volume": "11", "year": "2023" }, { "DOI": "10.1152/physiolgenomics.00087.2020", "article-title": "SARS-CoV-2, ACE2 expression, and systemic organ invasion", "author": "Ashraf", "doi-asserted-by": "publisher", "first-page": "51", "journal-title": "Physiol Genomics", "key": "B13", "volume": "53", "year": "2021" }, { "DOI": "10.1146/annurev-immunol-083122-043545", "article-title": "Innate immunity in protection and pathogenesis during coronavirus infections and COVID-19", "author": "Malireddi", "doi-asserted-by": "publisher", "journal-title": "Annu Rev Immunol", "key": "B14", "volume": "42", "year": "2024" }, { "DOI": "10.1038/s41590-021-01091-0", "article-title": "Innate immunity: the first line of defense against SARS-CoV-2", "author": "Diamond", "doi-asserted-by": "publisher", "journal-title": "Nat Immunol", "key": "B15", "volume": "23", "year": "2022" }, { "DOI": "10.1186/s12967-022-03767-z", "article-title": "Innate immunity, cytokine storm, and inflammatory cell death in COVID-19", "author": "Karki", "doi-asserted-by": "publisher", "first-page": "542", "journal-title": "J Transl Med", "key": "B16", "volume": "20", "year": "2022" }, { "DOI": "10.1186/s41232-023-00259-5", "article-title": "Innate immune recognition against SARS-CoV-2", "author": "Yamada", "doi-asserted-by": "publisher", "first-page": "7", "journal-title": "Inflammation Regen", "key": "B17", "volume": "43", "year": "2023" }, { "DOI": "10.1152/ajpcell.00224.2020", "article-title": "Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis", "author": "Singh", "doi-asserted-by": "publisher", "journal-title": "Am J Physiol Cell Physiol", "key": "B18", "volume": "319", "year": "2020" }, { "DOI": "10.1056/NEJMoa1312625", "article-title": "Activated STING in a vascular and pulmonary syndrome", "author": "Liu", "doi-asserted-by": "publisher", "journal-title": "N Engl J Med", "key": "B19", "volume": "371", "year": "2014" }, { "DOI": "10.1016/j.immuni.2021.05.006", "article-title": "SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2", "author": "Lu", "doi-asserted-by": "publisher", "first-page": "1304", "journal-title": "Immunity", "key": "B20", "volume": "54", "year": "2021" }, { "DOI": "10.1016/j.cytogfr.2024.10.001", "article-title": "The yin and yang of TLR4 in COVID-19", "author": "Mukherjee", "doi-asserted-by": "publisher", "first-page": "70", "journal-title": "Cytokine Growth Factor Rev", "key": "B21", "volume": "82", "year": "2025" }, { "DOI": "10.2147/JIR.S474707", "article-title": "Interplay of TLR4 and SARS-coV-2: unveiling the complex mechanisms of inflammation and severity in COVID-19 infections", "author": "Asaba", "doi-asserted-by": "publisher", "journal-title": "J Inflammation Res", "key": "B22", "volume": "17", "year": "2024" }, { "DOI": "10.2147/JIR.S501862", "article-title": "Interplay of TLR4 and SARS-coV-2: possible involvement of microRNAs [Letter", "author": "Gambari", "doi-asserted-by": "publisher", "journal-title": "J Inflammation Res", "key": "B23", "volume": "17", "year": "2024" }, { "DOI": "10.1016/j.ijbiomac.2024.137836", "article-title": "The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis", "author": "Behzadi", "doi-asserted-by": "publisher", "journal-title": "Int J Biol Macromol", "key": "B24", "volume": "284", "year": "2025" }, { "DOI": "10.1159/000543608", "article-title": "RNA viruses, toll-like receptors, and cytokines: the perfect storm", "author": "Stegeman", "doi-asserted-by": "publisher", "journal-title": "J Innate Immun", "key": "B25", "volume": "17", "year": "2025" }, { "DOI": "10.1038/nature09782", "article-title": "Autophagy in immunity and inflammation", "author": "Levine", "doi-asserted-by": "publisher", "journal-title": "Nature", "key": "B26", "volume": "469", "year": "2011" }, { "DOI": "10.1038/s41579-018-0003-6", "article-title": "Autophagy during viral infection - a double-edged sword", "author": "Choi", "doi-asserted-by": "publisher", "journal-title": "Nat Rev Microbiol", "key": "B27", "volume": "16", "year": "2018" }, { "DOI": "10.1016/j.semcdb.2014.08.006", "article-title": "mTOR and autophagy: a dynamic relationship governed by nutrients and energy", "author": "Dunlop", "doi-asserted-by": "publisher", "journal-title": "Semin Cell Dev Biol", "key": "B28", "volume": "36", "year": "2014" }, { "DOI": "10.1146/annurev-genet-102808-114910", "article-title": "Regulation mechanisms and signaling pathways of autophagy", "author": "He", "doi-asserted-by": "publisher", "first-page": "67", "journal-title": "Annu Rev Genet", "key": "B29", "volume": "43", "year": "2009" }, { "DOI": "10.1007/s00018-015-2034-8", "article-title": "Autophagy signal transduction by ATG proteins: from hierarchies to networks", "author": "Wesselborg", "doi-asserted-by": "publisher", "journal-title": "Cell Mol Life Sci", "key": "B30", "volume": "72", "year": "2015" }, { "DOI": "10.3390/antib13010013", "article-title": "SARS-coV-2: A glance at the innate immune response elicited by infection and vaccination", "author": "Manfrini", "doi-asserted-by": "publisher", "journal-title": "Antibodies (Basel)", "key": "B31", "volume": "13", "year": "2024" }, { "DOI": "10.7554/eLife.74681", "article-title": "Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection", "author": "Silverstein", "doi-asserted-by": "publisher", "first-page": "11", "journal-title": "Elife", "key": "B32", "volume": "11", "year": "2022" }, { "DOI": "10.1016/j.cell.2021.02.029", "article-title": "COVID-19 and the human innate immune system", "author": "Schultze", "doi-asserted-by": "publisher", "journal-title": "Cell", "key": "B33", "volume": "184", "year": "2021" }, { "DOI": "10.1038/s41577-024-01029-1", "article-title": "Defining the balance between optimal immunity and immunopathology in influenza virus infection", "author": "Nguyen", "doi-asserted-by": "publisher", "journal-title": "Nat Rev Immunol", "key": "B34", "volume": "24", "year": "2024" }, { "DOI": "10.3389/fimmu.2022.843342", "article-title": "Depletion and dysfunction of dendritic cells: understanding SARS-coV-2 infection", "author": "Chang", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B35", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.immuni.2018.10.005", "article-title": "Developmental and functional heterogeneity of monocytes", "author": "Guilliams", "doi-asserted-by": "publisher", "first-page": "595", "journal-title": "Immunity", "key": "B36", "volume": "49", "year": "2018" }, { "DOI": "10.3390/ijms26031263", "article-title": "SARS-coV-2 variants: genetic insights, epidemiological tracking, and implications for vaccine strategies", "author": "Alhamlan", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B37", "volume": "26", "year": "2025" }, { "DOI": "10.3389/fmed.2022.1079842", "article-title": "A comparative study on the three calculation methods for reproduction numbers of COVID-19", "author": "Abudunaibi", "doi-asserted-by": "publisher", "journal-title": "Front Med (Lausanne)", "key": "B38", "volume": "9", "year": "2023" }, { "DOI": "10.3934/mbe.2022418", "article-title": "Estimating relative generation times and reproduction numbers of Omicron BA.1 and BA.2 with respect to Delta variant in Denmark", "author": "Ito", "doi-asserted-by": "publisher", "journal-title": "Math Biosci Eng", "key": "B39", "volume": "19", "year": "2022" }, { "DOI": "10.1186/s40001-023-01047-0", "article-title": "The reproduction rate of severe acute respiratory syndrome coronavirus 2 different variants recently circulated in human: a narrative review", "author": "Karimizadeh", "doi-asserted-by": "publisher", "first-page": "94", "journal-title": "Eur J Med Res", "key": "B40", "volume": "28", "year": "2023" }, { "DOI": "10.1016/j.jgeb.2023.100347", "article-title": "SARS-CoV-2 Omicron Spike shows strong binding affinity and favourable interaction landscape with the TLR4/MD2 compared to other variants", "author": "Chakraborty", "doi-asserted-by": "publisher", "journal-title": "J Genet Eng Biotechnol", "key": "B41", "volume": "22", "year": "2024" }, { "DOI": "10.1016/j.celrep.2021.109126", "article-title": "Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities", "author": "Hayn", "doi-asserted-by": "publisher", "journal-title": "Cell Rep", "key": "B42", "volume": "35", "year": "2021" }, { "DOI": "10.1007/s00430-022-00734-9", "article-title": "Interferon antagonists encoded by SARS-CoV-2 at a glance", "author": "Lee", "doi-asserted-by": "publisher", "journal-title": "Med Microbiol Immunol", "key": "B43", "volume": "212", "year": "2023" }, { "DOI": "10.1126/science.abc8665", "article-title": "Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2", "author": "Thoms", "doi-asserted-by": "publisher", "journal-title": "Science", "key": "B44", "volume": "369", "year": "2020" }, { "DOI": "10.1021/acsinfecdis.0c00168", "article-title": "Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-coV-2 papain-like protease", "author": "Freitas", "doi-asserted-by": "publisher", "journal-title": "ACS Infect Dis", "key": "B45", "volume": "6", "year": "2020" }, { "DOI": "10.1371/journal.pone.0253364", "article-title": "Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies", "author": "Armstrong", "doi-asserted-by": "publisher", "first-page": "e0253364", "journal-title": "PloS One", "key": "B46", "volume": "16", "year": "2021" }, { "DOI": "10.1038/s41564-021-00884-1", "article-title": "ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity", "author": "Liu", "doi-asserted-by": "publisher", "journal-title": "Nat Microbiol", "key": "B47", "volume": "6", "year": "2021" }, { "DOI": "10.1038/s41586-020-2601-5", "article-title": "Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity", "author": "Shin", "doi-asserted-by": "publisher", "journal-title": "Nature", "key": "B48", "volume": "587", "year": "2020" }, { "DOI": "10.1099/vir.0.059014-0", "article-title": "Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease", "author": "Yang", "doi-asserted-by": "publisher", "journal-title": "J Gen Virol", "key": "B49", "volume": "95", "year": "2014" }, { "DOI": "10.1016/j.isci.2023.108080", "article-title": "The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity", "author": "Stewart", "doi-asserted-by": "publisher", "journal-title": "iScience", "key": "B50", "volume": "26", "year": "2023" }, { "DOI": "10.3389/fmolb.2021.813248", "article-title": "Molecular mechanism of SARS-coVs orf6 targeting the rae1-nup98 complex to compete with mRNA nuclear export", "author": "Li", "doi-asserted-by": "publisher", "journal-title": "Front Mol Biosci", "key": "B51", "volume": "8", "year": "2021" }, { "DOI": "10.1016/j.chom.2023.08.003", "article-title": "Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis", "author": "Kehrer", "doi-asserted-by": "publisher", "first-page": "1668", "journal-title": "Cell Host Microbe", "key": "B52", "volume": "31", "year": "2023" }, { "DOI": "10.1128/mbio.01194-23", "article-title": "SARS-CoV-2 ORF6 protein does not antagonize interferon signaling in respiratory epithelial Calu-3 cells during infection", "author": "Li", "doi-asserted-by": "publisher", "first-page": "e0119423", "journal-title": "mBio", "key": "B53", "volume": "14", "year": "2023" }, { "DOI": "10.26508/lsa.202201745", "article-title": "Reduced replication but increased interferon resistance of SARS-CoV-2 Omicron BA.1", "author": "Nchioua", "doi-asserted-by": "publisher", "first-page": "e202201745", "journal-title": "Life Sci Alliance", "key": "B54", "volume": "6", "year": "2023" }, { "DOI": "10.1016/j.cell.2023.08.026", "article-title": "SARS-CoV-2 variants evolve convergent strategies to remodel the host response", "author": "Bouhaddou", "doi-asserted-by": "publisher", "first-page": "4597", "journal-title": "Cell", "key": "B55", "volume": "186", "year": "2023" }, { "DOI": "10.3390/ijms24119353", "article-title": "SARS-coV-2 evasion of the interferon system: can we restore its effectiveness", "author": "Sacchi", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B56", "volume": "24", "year": "2023" }, { "DOI": "10.1016/j.molimm.2022.11.020", "article-title": "Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular approaches", "author": "Ahmadi", "doi-asserted-by": "publisher", "journal-title": "Mol Immunol", "key": "B57", "volume": "156", "year": "2023" }, { "DOI": "10.1126/sciimmunol.abi9007", "article-title": "Pharmacological activation of STING blocks SARS-CoV-2 infection", "author": "Li", "doi-asserted-by": "publisher", "first-page": "eabi9007", "journal-title": "Sci Immunol", "key": "B58", "volume": "6", "year": "2021" }, { "DOI": "10.3390/v13122467", "article-title": "SARS-coV-2 ORF3a induces incomplete autophagy via the unfolded protein response", "author": "Su", "doi-asserted-by": "publisher", "journal-title": "Viruses", "key": "B59", "volume": "13", "year": "2021" }, { "DOI": "10.3389/fcell.2021.716208", "article-title": "ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication", "author": "Qu", "doi-asserted-by": "publisher", "journal-title": "Front Cell Dev Biol", "key": "B60", "volume": "9", "year": "2021" }, { "DOI": "10.1038/s41421-021-00268-z", "article-title": "The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes", "author": "Zhang", "doi-asserted-by": "publisher", "first-page": "31", "journal-title": "Cell Discov", "key": "B61", "volume": "7", "year": "2021" }, { "DOI": "10.1080/15548627.2022.2084686", "article-title": "The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication", "author": "Hou", "doi-asserted-by": "publisher", "journal-title": "Autophagy", "key": "B62", "volume": "19", "year": "2023" }, { "DOI": "10.1016/j.devcel.2020.12.010", "article-title": "ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation", "author": "Miao", "doi-asserted-by": "publisher", "first-page": "427", "journal-title": "Dev Cell", "key": "B63", "volume": "56", "year": "2021" }, { "DOI": "10.1002/jmv.29200", "article-title": "SARS-CoV-2 ORF7a blocked autophagy flux by intervening in the fusion between autophagosome and lysosome to promote viral infection and pathogenesis", "author": "Li", "doi-asserted-by": "publisher", "first-page": "e29200", "journal-title": "J Med Virol", "key": "B64", "volume": "95", "year": "2023" }, { "DOI": "10.1016/j.devcel.2021.10.006", "article-title": "ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress", "author": "Chen", "doi-asserted-by": "publisher", "first-page": "3250", "journal-title": "Dev Cell", "key": "B65", "volume": "56", "year": "2021" }, { "DOI": "10.1002/jmv.28175", "article-title": "SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function", "author": "Su", "doi-asserted-by": "publisher", "first-page": "e28175", "journal-title": "J Med Virol", "key": "B66", "volume": "95", "year": "2023" }, { "DOI": "10.1080/15548627.2021.1953847", "article-title": "Manipulation of autophagy by SARS-CoV-2 proteins", "author": "Koepke", "doi-asserted-by": "publisher", "journal-title": "Autophagy", "key": "B67", "volume": "17", "year": "2021" }, { "DOI": "10.1038/s41423-021-00807-4", "article-title": "SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy", "author": "Li", "doi-asserted-by": "publisher", "first-page": "67", "journal-title": "Cell Mol Immunol", "key": "B68", "volume": "19", "year": "2022" }, { "DOI": "10.1038/s41392-021-00574-8", "article-title": "SARS-CoV-2 promote autophagy to suppress type I interferon response", "author": "Hui", "doi-asserted-by": "publisher", "first-page": "180", "journal-title": "Signal Transduct Target Ther", "key": "B69", "volume": "6", "year": "2021" }, { "DOI": "10.1002/jmv.27965", "article-title": "SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy", "author": "Han", "doi-asserted-by": "publisher", "journal-title": "J Med Virol", "key": "B70", "volume": "94", "year": "2022" }, { "DOI": "10.1016/j.bbrc.2020.12.091", "article-title": "The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy", "author": "Mohamud", "doi-asserted-by": "publisher", "first-page": "75", "journal-title": "Biochem Biophys Res Commun", "key": "B71", "volume": "540", "year": "2021" }, { "DOI": "10.1016/j.cell.2021.10.017", "article-title": "Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes", "author": "Kumar", "doi-asserted-by": "publisher", "first-page": "5950", "journal-title": "Cell", "key": "B72", "volume": "184", "year": "2021" }, { "DOI": "10.3389/fcimb.2024.1457617", "article-title": "Interaction between coronaviruses and the autophagic response", "author": "Yu", "doi-asserted-by": "publisher", "journal-title": "Front Cell Infect Microbiol", "key": "B73", "volume": "14", "year": "2024" }, { "DOI": "10.1016/j.virusres.2025.199611", "article-title": "Interplay between autophagy and apoptosis in human viral pathogenesis", "author": "Shao", "doi-asserted-by": "publisher", "journal-title": "Virus Res", "key": "B74", "volume": "359", "year": "2025" }, { "DOI": "10.1128/mbio.01020-23", "article-title": "Bidirectional interplay between SARS-CoV-2 and autophagy", "author": "Zhou", "doi-asserted-by": "publisher", "first-page": "e0102023", "journal-title": "mBio", "key": "B75", "volume": "14", "year": "2023" }, { "DOI": "10.1126/sciimmunol.abo6294", "article-title": "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection", "author": "Karki", "doi-asserted-by": "publisher", "first-page": "eabo6294", "journal-title": "Sci Immunol", "key": "B76", "volume": "7", "year": "2022" }, { "DOI": "10.1016/j.cell.2020.11.025", "article-title": "Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-coV-2 infection and cytokine shock syndromes", "author": "Karki", "doi-asserted-by": "publisher", "first-page": "149", "journal-title": "Cell", "key": "B77", "volume": "184", "year": "2021" }, { "DOI": "10.1101/2021.09.27.461948", "article-title": "Inflammasome activation in infected macrophages drives COVID-19 pathology", "author": "Sefik", "doi-asserted-by": "publisher", "first-page": "2021.09.27.461948", "journal-title": "bioRxiv", "key": "B78", "year": "2022" }, { "DOI": "10.1016/j.immuni.2022.01.003", "article-title": "Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway", "author": "Simpson", "doi-asserted-by": "publisher", "first-page": "423", "journal-title": "Immunity", "key": "B79", "volume": "55", "year": "2022" }, { "DOI": "10.15252/embr.202255839", "article-title": "Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1", "author": "Peng", "doi-asserted-by": "publisher", "first-page": "e55839", "journal-title": "EMBO Rep", "key": "B80", "volume": "23", "year": "2022" }, { "DOI": "10.1093/infdis/jiad056", "article-title": "The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-coV-2 and necroptosis, pyroptosis, and PANoptosis", "author": "Schifanella", "doi-asserted-by": "publisher", "journal-title": "J Infect Dis", "key": "B81", "volume": "227", "year": "2023" }, { "DOI": "10.1161/CIRCRESAHA.120.315937", "article-title": "Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease", "author": "Abbate", "doi-asserted-by": "publisher", "journal-title": "Circ Res", "key": "B82", "volume": "126", "year": "2020" }, { "DOI": "10.1016/S0140-6736(20)30937-5", "article-title": "Endothelial cell infection and endotheliitis in COVID-19", "author": "Varga", "doi-asserted-by": "publisher", "journal-title": "Lancet", "key": "B83", "volume": "395", "year": "2020" }, { "DOI": "10.1016/j.chom.2020.02.001", "article-title": "Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China", "author": "Wu", "doi-asserted-by": "publisher", "journal-title": "Cell Host Microbe", "key": "B84", "volume": "27", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.05.042", "article-title": "SARS-coV-2 reverse genetics reveals a variable infection gradient in the respiratory tract", "author": "Hou", "doi-asserted-by": "publisher", "first-page": "429", "journal-title": "Cell", "key": "B85", "volume": "182", "year": "2020" }, { "DOI": "10.1038/s41556-021-00681-2", "article-title": "Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity", "author": "Saichi", "doi-asserted-by": "publisher", "journal-title": "Nat Cell Biol", "key": "B86", "volume": "23", "year": "2021" }, { "DOI": "10.1038/s41420-019-0181-7", "article-title": "SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes", "author": "Shi", "doi-asserted-by": "publisher", "first-page": "101", "journal-title": "Cell Death Discov", "key": "B87", "volume": "5", "year": "2019" }, { "DOI": "10.1161/CIRCRESAHA.121.319117", "article-title": "SARS-coV-2 initiates programmed cell death in platelets", "author": "Koupenova", "doi-asserted-by": "publisher", "journal-title": "Circ Res", "key": "B88", "volume": "129", "year": "2021" }, { "DOI": "10.1084/jem.20201129", "article-title": "SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology", "author": "Veras", "doi-asserted-by": "publisher", "first-page": "e20201129", "journal-title": "J Exp Med", "key": "B89", "volume": "217", "year": "2020" }, { "DOI": "10.1172/jci.insight.138999", "article-title": "Neutrophil extracellular traps in COVID-19", "author": "Zuo", "doi-asserted-by": "publisher", "first-page": "e138999", "journal-title": "JCI Insight", "key": "B90", "volume": "5", "year": "2020" }, { "DOI": "10.1038/s41598-020-76781-0", "article-title": "The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19)", "author": "Arcanjo", "doi-asserted-by": "publisher", "first-page": "19630", "journal-title": "Sci Rep", "key": "B91", "volume": "10", "year": "2020" }, { "DOI": "10.1038/s41577-020-0367-5", "article-title": "Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children", "author": "Rowley", "doi-asserted-by": "publisher", "journal-title": "Nat Rev Immunol", "key": "B92", "volume": "20", "year": "2020" }, { "DOI": "10.1016/S2352-3026(21)00105-8", "article-title": "COVID-19-associated coagulopathy and antithrombotic agents-lessons after 1 year", "author": "Leentjens", "doi-asserted-by": "publisher", "journal-title": "Lancet Haematol", "key": "B93", "volume": "8", "year": "2021" }, { "DOI": "10.1111/all.15112", "article-title": "What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders", "author": "Maggi", "doi-asserted-by": "publisher", "journal-title": "Allergy", "key": "B94", "volume": "77", "year": "2022" }, { "DOI": "10.1128/mbio.01088-24", "article-title": "The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2", "author": "Yu", "doi-asserted-by": "publisher", "first-page": "e0108824", "journal-title": "mBio", "key": "B95", "volume": "15", "year": "2024" }, { "DOI": "10.1038/s41591-020-0944-y", "article-title": "A single-cell atlas of the peripheral immune response in patients with severe COVID-19", "author": "Wilk", "doi-asserted-by": "publisher", "journal-title": "Nat Med", "key": "B96", "volume": "26", "year": "2020" }, { "DOI": "10.3389/fimmu.2021.720109", "article-title": "Monocytes and macrophages in COVID-19", "author": "Knoll", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B97", "volume": "12", "year": "2021" }, { "DOI": "10.1073/pnas.2116853118", "article-title": "A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune-epithelial interface", "author": "Leon", "doi-asserted-by": "publisher", "journal-title": "Proc Natl Acad Sci U.S.A", "key": "B98", "volume": "119", "year": "2022" }, { "DOI": "10.1038/s41422-020-00455-9", "article-title": "Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages", "author": "Wauters", "doi-asserted-by": "publisher", "journal-title": "Cell Res", "key": "B99", "volume": "31", "year": "2021" }, { "DOI": "10.3389/fimmu.2022.842949", "article-title": "Myeloid-derived suppressor cells in COVID-19: the paradox of good", "author": "Grassi", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B100", "volume": "13", "year": "2022" }, { "DOI": "10.1182/blood-2016-11-752006", "article-title": "Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils", "author": "Khan", "doi-asserted-by": "publisher", "journal-title": "Blood", "key": "B101", "volume": "130", "year": "2017" }, { "DOI": "10.1182/blood.2021011525", "article-title": "Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation", "author": "Silva", "doi-asserted-by": "publisher", "journal-title": "Blood", "key": "B102", "volume": "138", "year": "2021" }, { "DOI": "10.1146/annurev-cellbio-020520-111016", "article-title": "Cellular mechanisms of NETosis", "author": "Thiam", "doi-asserted-by": "publisher", "first-page": "191", "journal-title": "Annu Rev Cell Dev Biol", "key": "B103", "volume": "36", "year": "2020" }, { "DOI": "10.1084/jem.20201012", "article-title": "Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19", "author": "Radermecker", "doi-asserted-by": "publisher", "first-page": "e20201012", "journal-title": "J Exp Med", "key": "B104", "volume": "217", "year": "2020" }, { "DOI": "10.1007/s11010-021-04107-3", "article-title": "Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs", "author": "Gupta", "doi-asserted-by": "publisher", "journal-title": "Mol Cell Biochem", "key": "B105", "volume": "476", "year": "2021" }, { "DOI": "10.1097/MOH.0000000000000724", "article-title": "Complement contributions to COVID-19", "author": "Conway", "doi-asserted-by": "publisher", "journal-title": "Curr Opin Hematol", "key": "B106", "volume": "29", "year": "2022" }, { "DOI": "10.1007/s00018-024-05157-8", "article-title": "Emerging role of complement in COVID-19 and other respiratory virus diseases", "author": "Xiao", "doi-asserted-by": "publisher", "first-page": "94", "journal-title": "Cell Mol Life Sci", "key": "B107", "volume": "81", "year": "2024" }, { "DOI": "10.1073/pnas.2018587118", "article-title": "Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity", "author": "Kvedaraite", "doi-asserted-by": "publisher", "first-page": "e2018587118", "journal-title": "Proc Natl Acad Sci U S A", "key": "B108", "volume": "118", "year": "2021" }, { "DOI": "10.1016/j.cell.2020.08.002", "article-title": "Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19", "author": "Silvin", "doi-asserted-by": "publisher", "first-page": "1401", "journal-title": "Cell", "key": "B109", "volume": "182", "year": "2020" }, { "DOI": "10.1016/j.xcrm.2022.100779", "article-title": "Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients", "author": "LaSalle", "doi-asserted-by": "publisher", "journal-title": "Cell Rep Med", "key": "B110", "volume": "3", "year": "2022" }, { "DOI": "10.1016/j.cell.2020.08.001", "article-title": "Severe COVID-19 is marked by a dysregulated myeloid cell compartment", "author": "Schulte-Schrepping", "doi-asserted-by": "publisher", "first-page": "1419", "journal-title": "Cell", "key": "B111", "volume": "182", "year": "2020" }, { "DOI": "10.1016/j.celrep.2021.108863", "article-title": "Metabolic programs define dysfunctional immune responses in severe COVID-19 patients", "author": "Thompson", "doi-asserted-by": "publisher", "journal-title": "Cell Rep", "key": "B112", "volume": "34", "year": "2021" }, { "DOI": "10.18632/aging.202571", "article-title": "Elevated frequencies of CD14(+)HLA-DR(lo/neg) MDSCs in COVID-19 patients", "author": "Xue", "doi-asserted-by": "publisher", "journal-title": "Aging (Albany NY)", "key": "B113", "volume": "13", "year": "2021" }, { "DOI": "10.1186/s13613-021-00896-4", "article-title": "Myeloid phenotypes in severe COVID-19 predict secondary infection and mortality: a pilot study", "author": "Marais", "doi-asserted-by": "publisher", "first-page": "111", "journal-title": "Ann Intensive Care", "key": "B114", "volume": "11", "year": "2021" }, { "DOI": "10.1126/scitranslmed.abe9599", "article-title": "Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro", "author": "Reyes", "doi-asserted-by": "publisher", "journal-title": "Sci Transl Med", "key": "B115", "volume": "13", "year": "2021" }, { "DOI": "10.3389/fimmu.2022.894543", "article-title": "Monocytic-myeloid derived suppressor cells suppress T-cell responses in recovered SARS coV2-infected individuals", "author": "Beliakova-Bethell", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B116", "volume": "13", "year": "2022" }, { "DOI": "10.3390/v16010027", "article-title": "The functional roles of MDSCs in severe COVID-19 pathogenesis", "author": "Len", "doi-asserted-by": "publisher", "journal-title": "Viruses", "key": "B117", "volume": "16", "year": "2023" }, { "DOI": "10.1002/cti2.1224", "article-title": "Innate lymphoid cell composition associates with COVID-19 disease severity", "author": "Garcia", "doi-asserted-by": "publisher", "first-page": "e1224", "journal-title": "Clin Transl Immunol", "key": "B118", "volume": "9", "year": "2020" }, { "DOI": "10.1038/s41423-020-00596-2", "article-title": "Severe COVID-19 patients exhibit an ILC2 NKG2D(+) population in their impaired ILC compartment", "author": "Gomez-Cadena", "doi-asserted-by": "publisher", "journal-title": "Cell Mol Immunol", "key": "B119", "volume": "18", "year": "2021" }, { "DOI": "10.3389/fimmu.2022.888248", "article-title": "Natural killer cells in SARS-coV-2 infection: pathophysiology and therapeutic implications", "author": "Di Vito", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B120", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.chom.2020.04.009", "article-title": "Complex immune dysregulation in COVID-19 patients with severe respiratory failure", "author": "Giamarellos-Bourboulis", "doi-asserted-by": "publisher", "first-page": "992", "journal-title": "Cell Host Microbe", "key": "B121", "volume": "27", "year": "2020" }, { "DOI": "10.1126/sciimmunol.abd6832", "article-title": "Natural killer cell immunotypes related to COVID-19 disease severity", "author": "Maucourant", "doi-asserted-by": "publisher", "journal-title": "Sci Immunol", "key": "B122", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.immuni.2021.09.002", "article-title": "Early IFN-alpha signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19", "author": "Kramer", "doi-asserted-by": "publisher", "first-page": "2650", "journal-title": "Immunity", "key": "B123", "volume": "54", "year": "2021" }, { "DOI": "10.1038/s41423-020-0493-9", "article-title": "Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19", "author": "Demaria", "doi-asserted-by": "publisher", "journal-title": "Cell Mol Immunol", "key": "B124", "volume": "17", "year": "2020" }, { "DOI": "10.1177/17534259221077750", "article-title": "Natural killer cell exhaustion in SARS-CoV-2 infection", "author": "Gallardo-Zapata", "doi-asserted-by": "publisher", "journal-title": "Innate Immun", "key": "B125", "volume": "28", "year": "2022" }, { "DOI": "10.1016/j.jaci.2020.05.001", "article-title": "COVID-19: Unanswered questions on immune response and pathogenesis", "author": "Maggi", "doi-asserted-by": "publisher", "first-page": "18", "journal-title": "J Allergy Clin Immunol", "key": "B126", "volume": "146", "year": "2020" }, { "DOI": "10.3389/fimmu.2024.1368946", "article-title": "TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells", "author": "Landolina", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B127", "volume": "15", "year": "2024" }, { "DOI": "10.3390/cells9091975", "article-title": "SARS-coV-2 spike 1 protein controls natural killer cell activation via the HLA-E/NKG2A pathway", "author": "Bortolotti", "doi-asserted-by": "publisher", "journal-title": "Cells", "key": "B128", "volume": "9", "year": "2020" }, { "DOI": "10.1182/bloodadvances.2020002650", "article-title": "Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19", "author": "Osman", "doi-asserted-by": "publisher", "journal-title": "Blood Adv", "key": "B129", "volume": "4", "year": "2020" }, { "DOI": "10.1002/art.39295", "article-title": "Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome", "author": "Cifaldi", "doi-asserted-by": "publisher", "journal-title": "Arthritis Rheumatol", "key": "B130", "volume": "67", "year": "2015" }, { "DOI": "10.1172/JCI138554", "article-title": "Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent", "author": "Mazzoni", "doi-asserted-by": "publisher", "journal-title": "J Clin Invest", "key": "B131", "volume": "130", "year": "2020" }, { "DOI": "10.3389/fimmu.2014.00461", "article-title": "Toll-like receptor signaling pathways", "author": "Kawasaki", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B132", "volume": "5", "year": "2014" }, { "DOI": "10.1371/journal.ppat.1007390", "article-title": "Toll-like receptor 4 in acute viral infection: Too much of a good thing", "author": "Olejnik", "doi-asserted-by": "publisher", "first-page": "e1007390", "journal-title": "PloS Pathog", "key": "B133", "volume": "14", "year": "2018" }, { "DOI": "10.1016/j.meegid.2020.104587", "article-title": "Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex", "author": "Bhattacharya", "doi-asserted-by": "publisher", "journal-title": "Infect Genet Evol", "key": "B134", "volume": "85", "year": "2020" }, { "DOI": "10.1002/jmv.25987", "article-title": "In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs", "author": "Choudhury", "doi-asserted-by": "publisher", "journal-title": "J Med Virol", "key": "B135", "volume": "92", "year": "2020" }, { "DOI": "10.1038/s41422-021-00495-9", "article-title": "SARS-CoV-2 spike protein interacts with and activates TLR41", "author": "Zhao", "doi-asserted-by": "publisher", "journal-title": "Cell Res", "key": "B136", "volume": "31", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2021.e06187", "article-title": "SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages", "author": "Shirato", "doi-asserted-by": "publisher", "journal-title": "Heliyon", "key": "B137", "volume": "7", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2023.e21893", "article-title": "SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19", "author": "Sahanic", "doi-asserted-by": "publisher", "journal-title": "Heliyon", "key": "B138", "volume": "9", "year": "2023" }, { "DOI": "10.1093/jmcb/mjaa067", "article-title": "SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity", "author": "Petruk", "doi-asserted-by": "publisher", "journal-title": "J Mol Cell Biol", "key": "B139", "volume": "12", "year": "2020" }, { "DOI": "10.1007/s10565-021-09693-y", "article-title": "SARS-CoV-2 Spike protein is not pro-inflammatory in human primary macrophages: endotoxin contamination and lack of protein glycosylation as possible confounders", "author": "Cinquegrani", "doi-asserted-by": "publisher", "journal-title": "Cell Biol Toxicol", "key": "B140", "volume": "38", "year": "2022" }, { "DOI": "10.1016/j.intimp.2021.108125", "article-title": "Increased LPS levels coexist with systemic inflammation and result in monocyte activation in severe COVID-19 patients", "author": "Teixeira", "doi-asserted-by": "publisher", "journal-title": "Int Immunopharmacol", "key": "B141", "volume": "100", "year": "2021" }, { "DOI": "10.1038/s41569-022-00737-2", "article-title": "Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease", "author": "Violi", "doi-asserted-by": "publisher", "first-page": "24", "journal-title": "Nat Rev Cardiol", "key": "B142", "volume": "20", "year": "2023" }, { "DOI": "10.3389/fimmu.2024.1444643", "article-title": "SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells to produce more IL-2", "author": "Niu", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B143", "volume": "15", "year": "2024" }, { "DOI": "10.1093/jmcb/mjac058", "article-title": "SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade", "author": "Samsudin", "doi-asserted-by": "publisher", "journal-title": "J Mol Cell Biol", "key": "B144", "volume": "14", "year": "2023" }, { "DOI": "10.1016/j.immuni.2011.05.006", "article-title": "Toll-like receptors and their crosstalk with other innate receptors in infection and immunity", "author": "Kawai", "doi-asserted-by": "publisher", "journal-title": "Immunity", "key": "B145", "volume": "34", "year": "2011" }, { "DOI": "10.3390/ijms25105451", "article-title": "In silico analyses indicate a lower potency for dimerization of TLR4/MD-2 as the reason for the lower pathogenicity of omicron compared to wild-type virus and earlier SARS-coV-2 variants", "author": "Kircheis", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B146", "volume": "25", "year": "2024" }, { "DOI": "10.3390/vaccines5040034", "article-title": "TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis", "author": "Kuzmich", "doi-asserted-by": "publisher", "journal-title": "Vaccines (Basel)", "key": "B147", "volume": "5", "year": "2017" }, { "DOI": "10.3390/life14020279", "article-title": "The role of furin in the pathogenesis of COVID-19-associated neurological disorders", "author": "Ayyubova", "doi-asserted-by": "publisher", "journal-title": "Life (Basel)", "key": "B148", "volume": "14", "year": "2024" }, { "DOI": "10.1016/j.celrep.2023.112189", "article-title": "SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice", "author": "Fontes-Dantas", "doi-asserted-by": "publisher", "journal-title": "Cell Rep", "key": "B149", "volume": "42", "year": "2023" }, { "DOI": "10.3389/fimmu.2025.1616106", "article-title": "Soluble SARS-CoV-2 Spike glycoprotein: considering some potential pathogenic effects", "author": "Azzarone", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B150", "volume": "16", "year": "2025" }, { "DOI": "10.1093/jimmun/vkaf033", "article-title": "The immunopathogenesis of SARS-CoV-2 infection: Overview of lessons learned in the first 5 years", "author": "Yang", "doi-asserted-by": "publisher", "journal-title": "J Immunol", "key": "B151", "volume": "214", "year": "2025" }, { "DOI": "10.3389/fphar.2022.989664", "article-title": "Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments", "author": "Liu", "doi-asserted-by": "publisher", "journal-title": "Front Pharmacol", "key": "B152", "volume": "13", "year": "2022" }, { "DOI": "10.2217/fvl-2021-0249", "article-title": "Toll-like receptor 4 in COVID-19: friend or foe", "author": "Mukherjee", "doi-asserted-by": "publisher", "first-page": "10.2217/fvl-2021-0249", "journal-title": "Future Virol", "key": "B153", "year": "2022" }, { "DOI": "10.1186/s12967-023-04588-4", "article-title": "Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis", "author": "Taylor", "doi-asserted-by": "publisher", "first-page": "775", "journal-title": "J Transl Med", "key": "B154", "volume": "21", "year": "2023" }, { "DOI": "10.3390/biomedicines11020451", "article-title": "Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-coV-2 and mRNA vaccines", "author": "Bellavite", "doi-asserted-by": "publisher", "journal-title": "Biomedicines", "key": "B155", "volume": "11", "year": "2023" }, { "DOI": "10.3390/biomedicines10010050", "article-title": "mRNA therapeutic modalities design, formulation and manufacturing under pharma 4.0 principles", "author": "Ouranidis", "doi-asserted-by": "publisher", "journal-title": "Biomedicines", "key": "B156", "volume": "10", "year": "2021" }, { "DOI": "10.3390/biomedicines10071538", "article-title": "Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination", "author": "Fertig", "doi-asserted-by": "publisher", "journal-title": "Biomedicines", "key": "B157", "volume": "10", "year": "2022" }, { "DOI": "10.1016/j.ymthe.2017.08.006", "article-title": "Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques", "author": "Liang", "doi-asserted-by": "publisher", "journal-title": "Mol Ther", "key": "B158", "volume": "25", "year": "2017" }, { "DOI": "10.3390/biomedicines10071464", "article-title": "Immune response to SARS-coV-2 vaccines", "author": "Bellamkonda", "doi-asserted-by": "publisher", "journal-title": "Biomedicines", "key": "B159", "volume": "10", "year": "2022" }, { "DOI": "10.1016/j.cell.2022.01.018", "article-title": "Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination", "author": "Roltgen", "doi-asserted-by": "publisher", "first-page": "1025", "journal-title": "Cell", "key": "B160", "volume": "185", "year": "2022" }, { "DOI": "10.1093/cid/ciab465", "article-title": "Circulating severe acute respiratory syndrome coronavirus 2 (SARS-coV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients", "author": "Ogata", "doi-asserted-by": "publisher", "journal-title": "Clin Infect Dis", "key": "B161", "volume": "74", "year": "2022" }, { "DOI": "10.1097/CCE.0000000000000144", "article-title": "Inflammation profiling of critically ill coronavirus disease 2019 patients", "author": "Fraser", "doi-asserted-by": "publisher", "journal-title": "Crit Care Explor", "key": "B162", "volume": "2", "year": "2020" }, { "DOI": "10.1038/s41423-020-0492-x", "article-title": "Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients", "author": "Chen", "doi-asserted-by": "publisher", "journal-title": "Cell Mol Immunol", "key": "B163", "volume": "17", "year": "2020" }, { "DOI": "10.1164/rccm.202005-1701LE", "article-title": "COVID-19 severity correlates with weaker T-cell immunity, hypercytokinemia, and lung epithelium injury", "author": "Wang", "doi-asserted-by": "publisher", "journal-title": "Am J Respir Crit Care Med", "key": "B164", "volume": "202", "year": "2020" }, { "DOI": "10.1183/23120541.00301-2024", "article-title": "Surfactant-derived protein type B: a new biomarker linked to respiratory failure and lung damage in mild to moderate SARS-CoV-2 pneumonia", "author": "Mapelli", "doi-asserted-by": "publisher", "journal-title": "ERJ Open Res", "key": "B165", "volume": "10", "year": "2024" }, { "DOI": "10.1074/jbc.M111.266528", "article-title": "Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response", "author": "Fang", "doi-asserted-by": "publisher", "journal-title": "J Biol Chem", "key": "B166", "volume": "286", "year": "2011" }, { "DOI": "10.1016/j.cytogfr.2021.10.004", "article-title": "S100A8/A9 in COVID-19 pathogenesis: Impact on clinical outcomes", "author": "Mellett", "doi-asserted-by": "publisher", "journal-title": "Cytokine Growth Factor Rev", "key": "B167", "volume": "63", "year": "2022" }, { "DOI": "10.1016/j.chom.2020.12.016", "article-title": "Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19", "author": "Guo", "doi-asserted-by": "publisher", "first-page": "222", "journal-title": "Cell Host Microbe", "key": "B168", "volume": "29", "year": "2021" }, { "DOI": "10.4049/jimmunol.167.5.2887", "article-title": "Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4", "author": "Smiley", "doi-asserted-by": "publisher", "journal-title": "J Immunol", "key": "B169", "volume": "167", "year": "2001" }, { "DOI": "10.1038/s41467-024-48589-3", "article-title": "Vascular endothelial-derived SPARCL1 exacerbates viral pneumonia through pro-inflammatory macrophage activation", "author": "Zhao", "doi-asserted-by": "publisher", "first-page": "4235", "journal-title": "Nat Commun", "key": "B170", "volume": "15", "year": "2024" }, { "DOI": "10.1084/jem.20141318", "article-title": "MD-2 is required for disulfide HMGB1-dependent TLR4 signaling", "author": "Yang", "doi-asserted-by": "publisher", "first-page": "5", "journal-title": "J Exp Med", "key": "B171", "volume": "212", "year": "2015" }, { "DOI": "10.1016/j.intimp.2021.108502", "article-title": "Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity", "author": "Passos", "doi-asserted-by": "publisher", "journal-title": "Int Immunopharmacol", "key": "B172", "volume": "104", "year": "2022" }, { "DOI": "10.3346/jkms.2020.35.e343", "article-title": "COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis", "author": "Sohn", "doi-asserted-by": "publisher", "journal-title": "J Korean Med Sci", "key": "B173", "volume": "35", "year": "2020" }, { "DOI": "10.1007/s00109-023-02283-x", "article-title": "Endotoxin tolerance and low activation of TLR-4/NF-kappaB axis in monocytes of COVID-19 patients", "author": "Dorneles", "doi-asserted-by": "publisher", "journal-title": "J Mol Med (Berl)", "key": "B174", "volume": "101", "year": "2023" }, { "DOI": "10.1016/j.mehy.2020.110412", "article-title": "Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory", "author": "Carcaterra", "doi-asserted-by": "publisher", "journal-title": "Med Hypotheses", "key": "B175", "volume": "146", "year": "2021" }, { "DOI": "10.15252/embj.20105114", "article-title": "SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells", "author": "Lukassen", "doi-asserted-by": "publisher", "journal-title": "EMBO J", "key": "B176", "volume": "39", "year": "2020" }, { "DOI": "10.1128/jvi.00753-22", "article-title": "Acquisition of furin cleavage site and further SARS-coV-2 evolution change the mechanisms of viral entry, infection spread, and cell signaling", "author": "Frolova", "doi-asserted-by": "publisher", "first-page": "e0075322", "journal-title": "J Virol", "key": "B177", "volume": "96", "year": "2022" }, { "DOI": "10.3389/fimmu.2020.622598", "article-title": "SP-A and SP-D: dual functioning immune molecules with antiviral and immunomodulatory properties", "author": "Watson", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B178", "volume": "11", "year": "2021" }, { "DOI": "10.1074/jbc.AW118.003229", "article-title": "Phospholipid regulation of innate immunity and respiratory viral infection", "author": "Voelker", "doi-asserted-by": "publisher", "journal-title": "J Biol Chem", "key": "B179", "volume": "294", "year": "2019" }, { "DOI": "10.1183/16000617.0077-2021", "article-title": "Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure", "author": "Milad", "doi-asserted-by": "publisher", "first-page": "210077", "journal-title": "Eur Respir Rev", "key": "B180", "volume": "30", "year": "2021" }, { "DOI": "10.3390/ijms24010326", "article-title": "The role of pulmonary surfactant phospholipids in fibrotic lung diseases", "author": "Tlatelpa-Romero", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B181", "volume": "24", "year": "2022" }, { "DOI": "10.1038/s41591-022-02156-9", "article-title": "Comorbidities, multimorbidity and COVID-19", "author": "Russell", "doi-asserted-by": "publisher", "journal-title": "Nat Med", "key": "B182", "volume": "29", "year": "2023" }, { "DOI": "10.2174/2772434416666210616124505", "article-title": "Taming the storm in the heart: exploring different therapeutic choices against myocardial inflammation in COVID-19", "author": "Choudhury", "doi-asserted-by": "publisher", "first-page": "89", "journal-title": "Recent Adv Antiinfect Drug Discov", "key": "B183", "volume": "16", "year": "2021" }, { "DOI": "10.1161/CIRCRESAHA.122.321541", "article-title": "Toll-like receptor 4-dependent platelet-related thrombosis in SARS-coV-2 infection", "author": "Carnevale", "doi-asserted-by": "publisher", "first-page": "290", "journal-title": "Circ Res", "key": "B184", "volume": "132", "year": "2023" }, { "DOI": "10.1186/s13045-020-00954-7", "article-title": "SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19", "author": "Zhang", "doi-asserted-by": "publisher", "first-page": "120", "journal-title": "J Hematol Oncol", "key": "B185", "volume": "13", "year": "2020" }, { "DOI": "10.1371/journal.pone.0085833", "article-title": "The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in alpha-granules trafficking", "author": "Tsai", "doi-asserted-by": "publisher", "first-page": "e85833", "journal-title": "PloS One", "key": "B186", "volume": "9", "year": "2014" }, { "DOI": "10.1182/bloodadvances.2022009022", "article-title": "Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19", "author": "Fortmann", "doi-asserted-by": "publisher", "journal-title": "Blood Adv", "key": "B187", "volume": "7", "year": "2023" }, { "DOI": "10.1016/j.jmii.2020.03.022", "article-title": "Genotype and phenotype of COVID-19: Their roles in pathogenesis", "author": "Mousavizadeh", "doi-asserted-by": "publisher", "journal-title": "J Microbiol Immunol Infect", "key": "B188", "volume": "54", "year": "2021" }, { "DOI": "10.3389/fmed.2020.631148", "article-title": "ACE gene I/D polymorphism and acute pulmonary embolism in COVID19 pneumonia: A potential predisposing role", "author": "Calabrese", "doi-asserted-by": "publisher", "journal-title": "Front Med (Lausanne)", "key": "B189", "volume": "7", "year": "2021" }, { "DOI": "10.3389/fendo.2021.688071", "article-title": "ACE gene variants rise the risk of severe COVID-19 in patients with hypertension, dyslipidemia or diabetes: A spanish pilot study", "author": "Iniguez", "doi-asserted-by": "publisher", "journal-title": "Front Endocrinol (Lausanne)", "key": "B190", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41440-020-00560-7", "article-title": "The pivotal role of the angiotensin-II-NF-kappaB axis in the development of COVID-19 pathophysiology", "author": "Okamoto", "doi-asserted-by": "publisher", "journal-title": "Hypertens Res", "key": "B191", "volume": "44", "year": "2021" }, { "DOI": "10.3389/fphar.2022.879693", "article-title": "Myeloid angiotensin II type 1 receptor mediates macrophage polarization and promotes vascular injury in DOCA/salt hypertensive mice", "author": "Yang", "doi-asserted-by": "publisher", "journal-title": "Front Pharmacol", "key": "B192", "volume": "13", "year": "2022" }, { "DOI": "10.1007/s12035-021-02593-6", "article-title": "SARS-coV-2 spike glycoprotein S1 induces neuroinflammation in BV-2 microglia", "author": "Olajide", "doi-asserted-by": "publisher", "journal-title": "Mol Neurobiol", "key": "B193", "volume": "59", "year": "2022" }, { "DOI": "10.1155/2021/8874339", "article-title": "COVID-19 and toll-like receptor 4 (TLR4): SARS-coV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation", "author": "Aboudounya", "doi-asserted-by": "publisher", "journal-title": "Mediators Inflamm", "key": "B194", "volume": "2021", "year": "2021" }, { "DOI": "10.1155/2020/7527953", "article-title": "Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment", "author": "Cicco", "doi-asserted-by": "publisher", "journal-title": "Mediators Inflamm", "key": "B195", "volume": "2020", "year": "2020" }, { "DOI": "10.1146/annurev-med-012017-043208", "article-title": "CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions", "author": "Hashimoto", "doi-asserted-by": "publisher", "journal-title": "Annu Rev Med", "key": "B196", "volume": "69", "year": "2018" }, { "DOI": "10.1016/j.pharmthera.2023.108399", "article-title": "The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases", "author": "Retnakumar", "doi-asserted-by": "publisher", "journal-title": "Pharmacol Ther", "key": "B197", "volume": "245", "year": "2023" }, { "DOI": "10.3389/fcimb.2023.1266790", "article-title": "Early expansion of activated adaptive but also exhausted NK cells during acute severe SARS-CoV-2 infection", "author": "Claus", "doi-asserted-by": "publisher", "journal-title": "Front Cell Infect Microbiol", "key": "B198", "volume": "13", "year": "2023" }, { "DOI": "10.1038/s41423-020-0402-2", "article-title": "Functional exhaustion of antiviral lymphocytes in COVID-19 patients", "author": "Zheng", "doi-asserted-by": "publisher", "journal-title": "Cell Mol Immunol", "key": "B199", "volume": "17", "year": "2020" }, { "DOI": "10.3389/fimmu.2022.837524", "article-title": "Trained immunity: an overview and the impact on COVID-19", "author": "Brueggeman", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B200", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.bbi.2021.12.007", "article-title": "SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties", "author": "Frank", "doi-asserted-by": "publisher", "journal-title": "Brain Behav Immun", "key": "B201", "volume": "100", "year": "2022" }, { "DOI": "10.3390/ijms22158059", "article-title": "SARS-coV-2 infected pediatric cerebral cortical neurons: transcriptomic analysis and potential role of toll-like receptors in pathogenesis", "author": "Gugliandolo", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B202", "volume": "22", "year": "2021" }, { "DOI": "10.1038/s41467-022-34068-0", "article-title": "Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study", "author": "Etter", "doi-asserted-by": "publisher", "first-page": "6777", "journal-title": "Nat Commun", "key": "B203", "volume": "13", "year": "2022" }, { "DOI": "10.3389/fimmu.2022.950076", "article-title": "Bioinformatics analysis of potential pathogenesis and risk genes of immunoinflammation-promoted renal injury in severe COVID-19", "author": "Chen", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B204", "volume": "13", "year": "2022" }, { "DOI": "10.1038/s41420-023-01584-x", "article-title": "Inhibition of Toll-like receptor 4 and Interleukin-1 receptor prevent SARS-CoV-2 mediated kidney injury", "author": "Nakazawa", "doi-asserted-by": "publisher", "first-page": "293", "journal-title": "Cell Death Discov", "key": "B205", "volume": "9", "year": "2023" }, { "DOI": "10.1016/j.bbadis.2024.167155", "article-title": "Toll like receptor 4 mediates the inhibitory effect of SARS-CoV-2 spike protein on proximal tubule albumin endocytosis", "author": "Silva-Aguiar", "doi-asserted-by": "publisher", "journal-title": "Biochim Biophys Acta Mol Basis Dis", "key": "B206", "volume": "1870", "year": "2024" }, { "DOI": "10.2147/JIR.S343246", "article-title": "Toll-like receptor 4 polymorphisms (896A/G and 1196C/T) as an indicator of COVID-19 severity in a convenience sample of Egyptian patients", "author": "Taha", "doi-asserted-by": "publisher", "journal-title": "J Inflammation Res", "key": "B207", "volume": "14", "year": "2021" }, { "DOI": "10.3389/fimmu.2024.1355193", "article-title": "The single nucleotide polymorphism rs4986790 (c.896A>G) in the gene TLR4 as a protective factor in corona virus disease 2019 (COVID-19)", "author": "Zacher", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B208", "volume": "15", "year": "2024" }, { "DOI": "10.3390/v15091784", "article-title": "Innate immune gene polymorphisms and COVID-19 prognosis", "author": "Bakaros", "doi-asserted-by": "publisher", "journal-title": "Viruses", "key": "B209", "volume": "15", "year": "2023" }, { "DOI": "10.1016/j.ijid.2023.11.032", "article-title": "Variant rs4986790 of toll-like receptor 4 affects the signaling and induces cell dysfunction in patients with severe COVID-19", "author": "Flores-Gonzalez", "doi-asserted-by": "publisher", "journal-title": "Int J Infect Dis", "key": "B210", "volume": "138", "year": "2024" }, { "DOI": "10.1186/s12964-022-01010-2", "article-title": "Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients", "author": "Li", "doi-asserted-by": "publisher", "first-page": "201", "journal-title": "Cell Commun Signal", "key": "B211", "volume": "20", "year": "2022" }, { "DOI": "10.1186/s12883-025-04212-6", "article-title": "Diagnostic biomarkers and immune infiltration profiles common to COVID-19, acute myocardial infarction and acute ischaemic stroke using bioinformatics methods and machine learning", "author": "Ma", "doi-asserted-by": "publisher", "first-page": "201", "journal-title": "BMC Neurol", "key": "B212", "volume": "25", "year": "2025" }, { "DOI": "10.1016/j.genrep.2021.101246", "article-title": "A bioinformatics approach for identifying potential molecular mechanisms and key genes involved in COVID-19 associated cardiac remodeling", "author": "Ceylan", "doi-asserted-by": "publisher", "journal-title": "Gene Rep", "key": "B213", "volume": "24", "year": "2021" }, { "DOI": "10.1038/s41598-021-94624-4", "article-title": "Lower peripheral blood Toll-like receptor 3 expression is associated with an unfavorable outcome in severe COVID-19 patients", "author": "Menezes", "doi-asserted-by": "publisher", "first-page": "15223", "journal-title": "Sci Rep", "key": "B214", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2022.e12653", "article-title": "Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity", "author": "Alturaiki", "doi-asserted-by": "publisher", "journal-title": "Heliyon", "key": "B215", "volume": "9", "year": "2023" }, { "DOI": "10.3390/ijms24098065", "article-title": "TLRs: innate immune sentries against SARS-coV-2 infection", "author": "Mantovani", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B216", "volume": "24", "year": "2023" }, { "DOI": "10.1038/s41598-023-30474-6", "article-title": "MicroRNAs and cytokines as potential predictive biomarkers for COVID-19 disease progression", "author": "Mohamed", "doi-asserted-by": "publisher", "first-page": "3531", "journal-title": "Sci Rep", "key": "B217", "volume": "13", "year": "2023" }, { "DOI": "10.3390/ijms241713259", "article-title": "The role of toll-like receptor-4 in macrophage imbalance in lethal COVID-19 lung disease, and its correlation with galectin-3", "author": "Pedicillo", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B218", "volume": "24", "year": "2023" }, { "DOI": "10.1016/j.humimm.2025.111249", "article-title": "Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression", "author": "Unterberger", "doi-asserted-by": "publisher", "journal-title": "Hum Immunol", "key": "B219", "volume": "86", "year": "2025" }, { "DOI": "10.1186/s41479-023-00121-9", "article-title": "Serum soluble toll-like receptor 4 and risk for clinical severity in COVID-19 patients", "author": "Houssen", "doi-asserted-by": "publisher", "journal-title": "Pneumonia (Nathan)", "key": "B220", "volume": "16", "year": "2024" }, { "DOI": "10.1016/j.cell.2022.09.032", "article-title": "Interval between prior SARS-CoV-2 infection and booster vaccination impacts magnitude and quality of antibody and B cell responses", "author": "Buckner", "doi-asserted-by": "publisher", "first-page": "4333", "journal-title": "Cell", "key": "B221", "volume": "185", "year": "2022" }, { "DOI": "10.1371/journal.pone.0251170", "article-title": "Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis", "author": "Musuuza", "doi-asserted-by": "publisher", "first-page": "e0251170", "journal-title": "PloS One", "key": "B222", "volume": "16", "year": "2021" }, { "DOI": "10.1128/mBio.00638-15", "article-title": "Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection", "author": "Totura", "doi-asserted-by": "publisher", "journal-title": "mBio", "key": "B223", "volume": "6", "year": "2015" }, { "DOI": "10.3389/fimmu.2024.1439418", "article-title": "The adjuvant BcfA activates antigen presenting cells through TLR4 and supports T(FH) and T(H)1 while attenuating T(H)2 gene programming", "author": "Shamseldin", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B224", "volume": "15", "year": "2024" }, { "DOI": "10.1136/annrheumdis-2019-216487", "article-title": "Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a phase II study", "author": "Monnet", "doi-asserted-by": "publisher", "journal-title": "Ann Rheum Dis", "key": "B225", "volume": "79", "year": "2020" }, { "DOI": "10.1038/nature12118", "article-title": "The TLR4 antagonist Eritoran protects mice from lethal influenza infection", "author": "Shirey", "doi-asserted-by": "publisher", "first-page": "498", "journal-title": "Nature", "key": "B226", "volume": "497", "year": "2013" }, { "DOI": "10.1016/j.humimm.2021.05.001", "article-title": "Chemotherapy vs. Immunotherapy in combating nCOVID19: An update", "author": "Choudhury", "doi-asserted-by": "publisher", "journal-title": "Hum Immunol", "key": "B227", "volume": "82", "year": "2021" }, { "DOI": "10.3389/fmolb.2021.636647", "article-title": "A multifunctional peptide from bacillus fermented soybean for effective inhibition of SARS-coV-2 S1 receptor binding domain and modulation of toll like receptor 4: A molecular docking study", "author": "Padhi", "doi-asserted-by": "publisher", "journal-title": "Front Mol Biosci", "key": "B228", "volume": "8", "year": "2021" }, { "DOI": "10.3892/mmr.2017.8189", "article-title": "NACHT, LRR and PYD domains-containing protein 3 inflammasome is activated and inhibited by berberine via toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappaB pathway, in phorbol 12-myristate 13-acetate-induced macrophages", "author": "Huang", "doi-asserted-by": "publisher", "journal-title": "Mol Med Rep", "key": "B229", "volume": "17", "year": "2018" }, { "DOI": "10.1002/jmv.26387", "article-title": "Targeting human TLRs to combat COVID-19: A solution", "author": "Patra", "doi-asserted-by": "publisher", "journal-title": "J Med Virol", "key": "B230", "volume": "93", "year": "2021" }, { "DOI": "10.4049/jimmunol.2200855", "article-title": "Mechanism of TLR4-mediated anti-inflammatory response induced by exopolysaccharide from the probiotic bacillus subtilis", "author": "Zamora-Pineda", "doi-asserted-by": "publisher", "journal-title": "J Immunol", "key": "B231", "volume": "211", "year": "2023" }, { "DOI": "10.3892/etm.2018.5815", "article-title": "Effect of TLR4/MyD88 signaling pathway on sepsis-associated acute respiratory distress syndrome in rats, via regulation of macrophage activation and inflammatory response", "author": "Zhou", "doi-asserted-by": "publisher", "journal-title": "Exp Ther Med", "key": "B232", "volume": "15", "year": "2018" }, { "DOI": "10.1038/s41579-022-00809-7", "article-title": "SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies", "author": "Cox", "doi-asserted-by": "publisher", "journal-title": "Nat Rev Microbiol", "key": "B233", "volume": "21", "year": "2023" }, { "DOI": "10.3390/antib12010017", "article-title": "Comparative binding ability of human monoclonal antibodies against omicron variants of SARS-coV-2: an in silico investigation", "author": "Das", "doi-asserted-by": "publisher", "journal-title": "Antibodies (Basel)", "key": "B234", "volume": "12", "year": "2023" }, { "DOI": "10.3389/fimmu.2021.782506", "article-title": "In silico analyses on the comparative potential of therapeutic human monoclonal antibodies against newly emerged SARS-coV-2 variants bearing mutant spike protein", "author": "Das", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "B235", "volume": "12", "year": "2022" }, { "DOI": "10.1016/j.drudis.2023.103663", "article-title": "Harnessing aptamers against COVID-19: A therapeutic strategy", "author": "Mahmoudi", "doi-asserted-by": "publisher", "journal-title": "Drug Discov Today", "key": "B236", "volume": "28", "year": "2023" }, { "DOI": "10.1016/j.molliq.2022.118633", "article-title": "Designing AbhiSCoVac - A single potential vaccine for all ‘corona culprits’: Immunoinformatics and immune simulation approaches", "author": "Choudhury", "doi-asserted-by": "publisher", "journal-title": "J Mol Liq", "key": "B237", "volume": "351", "year": "2022" }, { "DOI": "10.1126/science.abb0762", "article-title": "Aging immunity may exacerbate COVID-19", "author": "Akbar", "doi-asserted-by": "publisher", "journal-title": "Science", "key": "B238", "volume": "369", "year": "2020" }, { "DOI": "10.1001/jama.2020.13719", "article-title": "Presence of genetic variants among young men with severe COVID-19", "author": "van der Made", "doi-asserted-by": "publisher", "journal-title": "JAMA", "key": "B239", "volume": "324", "year": "2020" }, { "DOI": "10.7150/ntno.91910", "article-title": "Recurring SARS-CoV-2 variants: an update on post-pandemic, co-infections and immune response", "author": "Verma", "doi-asserted-by": "publisher", "journal-title": "Nanotheranostics", "key": "B240", "volume": "8", "year": "2024" }, { "DOI": "10.1080/07391102.2023.2283158", "article-title": "Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study", "author": "Yousefbeigi", "doi-asserted-by": "publisher", "journal-title": "J Biomol Struct Dyn", "key": "B241", "volume": "43", "year": "2025" }, { "DOI": "10.3390/ijms232214146", "article-title": "Cytokine profiling in different SARS-coV-2 genetic variants", "author": "Korobova", "doi-asserted-by": "publisher", "journal-title": "Int J Mol Sci", "key": "B242", "volume": "23", "year": "2022" }, { "DOI": "10.1007/s10753-022-01734-w", "article-title": "SARS-coV-2 variants show a gradual declining pathogenicity and pro-inflammatory cytokine stimulation, an increasing antigenic and anti-inflammatory cytokine induction, and rising structural protein instability: A minimal number genome-based approach", "author": "Barh", "doi-asserted-by": "publisher", "first-page": "297", "journal-title": "Inflammation", "key": "B243", "volume": "46", "year": "2023" }, { "DOI": "10.1159/000539292", "article-title": "The molecular basis of olfactory dysfunction in COVID-19 and long COVID", "author": "Anastassopoulou", "doi-asserted-by": "publisher", "first-page": "42", "journal-title": "Lifestyle Genom", "key": "B244", "volume": "17", "year": "2024" }, { "DOI": "10.3390/jcm13010128", "article-title": "Differences in the clinical manifestations and host immune responses to SARS-coV-2 variants in children compared to adults", "author": "Demirhan", "doi-asserted-by": "publisher", "journal-title": "J Clin Med", "key": "B245", "volume": "13", "year": "2023" }, { "DOI": "10.1007/s00431-023-05134-6", "article-title": "Evaluation of post-COVID symptoms of the SARS-CoV-2 Delta and Omicron variants in children: A prospective study", "author": "Yildirim Arslan", "doi-asserted-by": "publisher", "journal-title": "Eur J Pediatr", "key": "B246", "volume": "182", "year": "2023" }, { "DOI": "10.3389/fped.2023.1127582", "article-title": "Prevalence and associating factors of long COVID in pediatric patients during the Delta and the Omicron variants", "author": "Lokanuwatsatien", "doi-asserted-by": "publisher", "journal-title": "Front Pediatr", "key": "B247", "volume": "11", "year": "2023" }, { "DOI": "10.1038/s41586-021-03777-9", "article-title": "Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization", "author": "Planas", "doi-asserted-by": "publisher", "journal-title": "Nature", "key": "B248", "volume": "596", "year": "2021" }, { "DOI": "10.1056/NEJMoa2103055", "article-title": "Efficacy of NVX-CoV2373 Covid-19 vaccine against the B. 1.351 variant", "author": "Shinde", "doi-asserted-by": "publisher", "journal-title": "N Engl J Med", "key": "B249", "volume": "384", "year": "2021" }, { "DOI": "10.1139/cjpp-2015-0219", "article-title": "LPS-RS attenuation of lipopolysaccharide-induced acute lung injury involves NF-κB inhibition", "author": "Abdelmageed", "doi-asserted-by": "publisher", "journal-title": "Can J Physiol Pharmacol", "key": "B250", "volume": "94", "year": "2016" }, { "DOI": "10.1016/j.ijbiomac.2023.125444", "article-title": "Targeting DPP4- RBD interactions by sitagliptin and linagliptin delivers a potential host-directed therapy against pan-SARS-CoV-2 infections", "author": "Mani", "doi-asserted-by": "publisher", "journal-title": "Int J Biol Macromol", "key": "B251", "volume": "245", "year": "2023" }, { "DOI": "10.1016/j.bja.2021.08.022", "article-title": "Therapeutic potential of long-acting opioids and opioid antagonists for SARS-CoV-2 infection", "author": "Eagleton", "doi-asserted-by": "publisher", "journal-title": "Br J Anaesth", "key": "B252", "volume": "127", "year": "2021" }, { "DOI": "10.1073/pnas.2306399120", "article-title": "Disulfiram blocks inflammatory TLR4 signaling by targeting MD-2", "author": "Bai", "doi-asserted-by": "publisher", "first-page": "e2306399120", "journal-title": "Proc Natl Acad Sci U S A", "key": "B253", "volume": "120", "year": "2023" }, { "DOI": "10.1016/j.clim.2011.02.017", "article-title": "Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action", "author": "Gold", "doi-asserted-by": "publisher", "journal-title": "Clin Immunol", "key": "B254", "volume": "142", "year": "2012" }, { "DOI": "10.2174/1570180818666210901125519", "article-title": "In silico identification of new anti-SARS-CoV-2 agents from bioactive phytocompounds targeting the viral spike glycoprotein and human TLR4", "author": "Das", "doi-asserted-by": "publisher", "journal-title": "Lett Drug Des Discov", "key": "B255", "volume": "19", "year": "2021" }, { "DOI": "10.1002/ptr.7302", "article-title": "Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line", "author": "Corpetti", "doi-asserted-by": "publisher", "journal-title": "Phytother Res", "key": "B256", "volume": "35", "year": "2021" } ], "reference-count": 256, "references-count": 256, "relation": {}, "resource": { "primary": { "URL": "https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658396/full" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "The innate immune response in SARS-CoV2 infection: focus on toll-like receptor 4 in severe disease outcomes", "type": "journal-article", "update-policy": "https://doi.org/10.3389/crossmark-policy", "volume": "16" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit