Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

ZINC000009464451 for COVID-19

ZINC000009464451 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Faisal et al., Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches, Molecules, doi:10.3390/molecules27165241
Since its emergence in early 2019, the respiratory infectious virus, SARS-CoV-2, has ravaged the health of millions of people globally and has affected almost every sphere of life. Many efforts are being made to combat the COVID-19 pandemic’s emerging and recurrent waves caused by its evolving and more infectious variants. As a result, novel and unexpected targets for SARS-CoV-2 have been considered for drug discovery. 2′-O-Methyltransferase (nsp10/nsp16) is a significant and appealing target in the SARS-CoV-2 life cycle because it protects viral RNA from the host degradative enzymes via a cap formation process. In this work, we propose prospective allosteric inhibitors that target the allosteric site, SARS-CoV-2 MTase. Four drug libraries containing ~119,483 compounds were screened against the allosteric site of SARS-CoV-2 MTase identified in our research. The identified best compounds exhibited robust molecular interactions and alloscore-score rankings with the allosteric site of SARS-CoV-2 MTase. Moreover, to further assess the dynamic stability of these compounds (CHEMBL2229121, ZINC000009464451, SPECS AK-91811684151, NCI-ID = 715319), a 100 ns molecular dynamics simulation, along with its holo-form, was performed to provide insights on the dynamic nature of these allosteric inhibitors at the allosteric site of the SARS-CoV-2 MTase. Additionally, investigations of MM-GBSA binding free energies revealed a good perspective for these allosteric inhibitor–enzyme complexes, indicating their robust antagonistic action on SARS-CoV-2 (nsp10/nsp16) methyltransferase. We conclude that these allosteric repressive agents should be further evaluated through investigational assessments in order to combat the proliferation of SARS-CoV-2.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit