Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

YS-49 for COVID-19

YS-49 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Zhu et al., Characterization of ACTN4 as a novel antiviral target against SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-024-01956-4
AbstractThe various mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pose a substantial challenge in mitigating the viral infectivity. The identification of novel host factors influencing SARS-CoV-2 replication holds potential for discovering new targets for broad-spectrum antiviral drugs that can combat future viral mutations. In this study, potential host factors regulated by SARS-CoV-2 infection were screened through different high-throughput sequencing techniques and further identified in cells. Subsequent analysis and experiments showed that the reduction of m6A modification level on ACTN4 (Alpha-actinin-4) mRNA leads to a decrease in mRNA stability and translation efficiency, ultimately inhibiting ACTN4 expression. In addition, ACTN4 was demonstrated to target nsp12 for binding and characterized as a competitor for SARS-CoV-2 RNA and the RNA-dependent RNA polymerase complex, thereby impeding viral replication. Furthermore, two ACTN4 agonists, YS-49 and demethyl-coclaurine, were found to dose-dependently inhibit SARS-CoV-2 infection in both Huh7 cells and K18-hACE2 transgenic mice. Collectively, this study unveils the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveals two potential candidates for future anti-SARS-CoV-2 drug development.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit