VIR-7229 for COVID-19

VIR-7229 has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed VIR-7229 in detail.
Lee et al., The computationally designed TRI2-2 miniprotein inhibitor protects against multiple SARS-CoV-2 Omicron variants, Communications Biology, doi:10.1038/s42003-025-09499-2
Abstract The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised neutralizing antibody responses elicited by prior infection or vaccination and abolished the utility of most monoclonal antibody therapeutics. We previously described a computationally-designed, homotrimeric miniprotein inhibitor, designated TRI2-2, that protects mice against pre-Omicron SARS-CoV-2 variants. Here, we show that TRI2-2 exhibits broadly neutralizing activity of SARS-CoV-2 variants and protects mice against BQ.1.1, XBB.1.5 and BA.2.86 challenge when administered intranasally post-exposure. The resistance of TRI2-2 to viral escape by most variants and the ability to deliver it directly to the upper airways highlight the potential of the multivalent miniprotein inhibitor as an alternative therapeutic modality.
Zhang et al., Broadly Sarbecovirus-Neutralizing Antibodies Induced by Ancestral SARS-CoV-2 Infection, Viruses, doi:10.3390/v17101285
The COVID-19 pandemic, driven by SARS-CoV-2, continues to challenge global health due to emerging variants and the potential risk posed by related sarbecoviruses. Neutralizing antibodies targeting the spike (S) glycoprotein, particularly the receptor-binding domain (RBD), play a crucial role in viral neutralization and vaccine design. Although broadly neutralizing anti-RBD antibodies have been identified, the nature of cross-reactive humoral responses induced by natural infection with ancestral SARS-CoV-2 strains remains incompletely understood. Here, we isolated 105 S-specific monoclonal antibodies (mAbs) from individuals recovered from prototype SARS-CoV-2 infection. Of these, 30 mAbs cross-recognized SARS-CoV-1, including 25 RBD-directed mAbs, of which 12 displayed cross-neutralizing activity against both viruses. Among them, mAb 12C2 potently neutralized SARS-CoV-1 and multiple SARS-CoV-2 variants, likely through mechanisms that include inhibition of membrane fusion and potential destabilization of the S trimer. Cryo-electron microscopy revealed that 12C2 engages the outer face of the RBD, overlapping with the epitope recognized by the broadly neutralizing antibody S309 derived from SARS-CoV-1 convalescent. Collectively, these findings demonstrate that ancestral SARS-CoV-2 infection can elicit robust cross-neutralizing antibody responses and provide valuable insights for the design of broadly protective antibodies and vaccines.