Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Ustekinumab for COVID-19

Ustekinumab has been reported as potentially beneficial for COVID-19 in the following studies. We have not reviewed ustekinumab in detail.
COVID-19 involves the interplay of over 100 viral and host proteins and factors providing many therapeutic targets. Scientists have proposed over 9,000 potential treatments. c19early.org analyzes 170+ treatments.
Rosa-Baez et al., Cross-trait GWAS in COVID-19 and systemic sclerosis reveals novel genes implicated in fibrotic and inflammation pathways, Rheumatology, doi:10.1093/rheumatology/keaf028
Abstract Objectives Coronavirus disease 2019 (COVID-19) and SSc share multiple similarities in their clinical manifestations, alterations in immune response and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc. Methods For this study, we retrieved genomic data from two European-ancestry cohorts: 2 597 856 individuals from The COVID-19 Host Genetics Initiative consortium, and 26 679 individuals from the largest genomic scan in SSc. We performed a cross-trait meta-analyses including >9.3 million single nucleotide polymorphisms. Finally, we conducted functional annotation to prioritize potential causal genes and performed drug repurposing analysis. Results Our results revealed a total of 19 non-HLA pleiotropic loci, including 2 novel associations for both conditions (BMP1 and PPARG) and 12 emerging as new shared loci. Functional annotation of these regions underscored their potential regulatory role and identified potential causal genes, many of which are implicated in fibrotic and inflammatory pathways. Remarkably, we observed an antagonistic pleiotropy model of the IFN signalling between COVID-19 and SSc, including the well-known TYK2 P1104A missense variant, showing a protective effect for SSc while being a risk factor for COVID-19, along with two additional novel pleiotropic associations (IRF8 and SENP7). Finally, our findings provide new therapeutic options that could potentially benefit both conditions. Conclusion Our study confirms the genetic resemblance between susceptibility to and severity of COVID-19 and SSc, revealing a novel common genetic contribution affecting fibrotic and immune pathways.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit