UNC0631 for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
UNC0631 may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed UNC0631 in detail.
, Identification, validation, and characterization of approved and investigational drugs interfering with the SARS ‐CoV ‐2 endoribonuclease Nsp15, Protein Science, doi:10.1002/pro.70156
AbstractSince the emergence of SARS‐CoV‐2 at the end of 2019, the virus has caused significant global health and economic disruptions. Despite the rapid development of antiviral vaccines and some approved treatments such as remdesivir and paxlovid, effective antiviral pharmacological treatments for COVID‐19 patients remain limited. This study explores Nsp15, a 3′‐uridylate‐specific RNA endonuclease, which has a critical role in immune system evasion and hence in escaping the innate immune sensors. We conducted a comprehensive drug repurposing screen and identified 44 compounds that showed more than 55% inhibition of Nsp15 activity in a real‐time fluorescence assay. A validation pipeline was employed to exclude unspecific interactions, and dose–response assays confirmed 29 compounds with an IC50 below 10 μM. Structural studies, including molecular docking and x‐ray crystallography, revealed key interactions of identified inhibitors, such as TAS‐103 and YM‐155, with the Nsp15 active site and other critical regions. Our findings show that the identified compounds, particularly those retaining potency under different assay conditions, could serve as promising hits for developing Nsp15 inhibitors. Additionally, the study emphasizes the potential of combination therapies targeting multiple viral processes to enhance treatment efficacy and reduce the risk of drug resistance. This research contributes to the ongoing efforts to develop effective antiviral therapies for SARS‐CoV‐2 and possibly other coronaviruses.
, Drug repurposing screens reveal FDA approved drugs active against SARS-Cov-2, bioRxiv, doi:10.1101/2020.06.19.161042
AbstractThere are an urgent need for antivirals to treat the newly emerged SARS-CoV-2. To identify new candidates we screened a repurposing library of ~3,000 drugs. Screening in Vero cells found few antivirals, while screening in human Huh7.5 cells validated 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we found that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH-independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we found 9 drugs are antiviral in lung cells, 7 of which have been tested in humans, and 3 are FDA approved including Cyclosporine which we found is targeting Cyclophilin rather than Calcineurin for its antiviral activity. These antivirals reveal essential host targets and have the potential for rapid clinical implementation.