UAWJ9-36-1 for COVID-19
UAWJ9-36-1 has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives, Biomolecules, doi:10.3390/biom13091339
,
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies, Processes, doi:10.3390/pr11082294
,
In this study, we present the highly efficient and rapid synthesis of substituted dihydropyrimidinone derivatives through an ultrasound-accelerated approach. We utilize copper ferrite (CuFe2O4) magnetic nanoparticles as heterogeneous catalysts, employing the well-known Biginelli reaction, under solvent-free conditions. The impact of the solvent, catalyst amount, and catalyst type on the reaction performance is thoroughly investigated. Our method offers several notable advantages, including facile catalyst separation, catalyst reusability for up to three cycles with the minimal loss of activity, a straightforward procedure, mild reaction conditions, and impressive yields, ranging from 79% to 95%, within short reaction times of 20 to 40 min. Furthermore, in the context of fighting COVID-19, we explore the potential of substituted dihydropyrimidinone derivatives as inhibitors of three crucial SARS-CoV-2 proteins. These proteins, glycoproteins, and proteases play pivotal roles in the entry, replication, and spread of the virus. Peptides and antiviral drugs targeting these proteins hold great promise in the development of effective treatments. Through theoretical molecular docking studies, we compare the binding properties of the synthesized dihydropyrimidinone derivatives with the widely used hydroxychloroquine molecule as a reference. Our findings reveal that some of the tested molecules exhibit superior binding characteristics compared to hydroxychloroquine, while others demonstrate comparable results. These results highlight the potential of our synthesized derivatives as effective inhibitors in the fight against SARS-CoV-2.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.