Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

TKB245 for COVID-19

TKB245 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Citarella et al., Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives, Biomolecules, doi:10.3390/biom13091339
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Carabineiro et al., CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies, Processes, doi:10.3390/pr11082294
In this study, we present the highly efficient and rapid synthesis of substituted dihydropyrimidinone derivatives through an ultrasound-accelerated approach. We utilize copper ferrite (CuFe2O4) magnetic nanoparticles as heterogeneous catalysts, employing the well-known Biginelli reaction, under solvent-free conditions. The impact of the solvent, catalyst amount, and catalyst type on the reaction performance is thoroughly investigated. Our method offers several notable advantages, including facile catalyst separation, catalyst reusability for up to three cycles with the minimal loss of activity, a straightforward procedure, mild reaction conditions, and impressive yields, ranging from 79% to 95%, within short reaction times of 20 to 40 min. Furthermore, in the context of fighting COVID-19, we explore the potential of substituted dihydropyrimidinone derivatives as inhibitors of three crucial SARS-CoV-2 proteins. These proteins, glycoproteins, and proteases play pivotal roles in the entry, replication, and spread of the virus. Peptides and antiviral drugs targeting these proteins hold great promise in the development of effective treatments. Through theoretical molecular docking studies, we compare the binding properties of the synthesized dihydropyrimidinone derivatives with the widely used hydroxychloroquine molecule as a reference. Our findings reveal that some of the tested molecules exhibit superior binding characteristics compared to hydroxychloroquine, while others demonstrate comparable results. These results highlight the potential of our synthesized derivatives as effective inhibitors in the fight against SARS-CoV-2.
Higashi-Kuwata et al., Identification of SARS-CoV-2 Mpro inhibitors containing P1’ 4-fluorobenzothiazole moiety highly active against SARS-CoV-2, Nature Communications, doi:10.1038/s41467-023-36729-0
Abstract COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro’s active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit