Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Timolol for COVID-19

Timolol has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Alzahrani, K., Repurposing of Anti-Cancer Drugs Against Moderate and Severe COVID Infection: A Network-Based Systems Biological Approach, Nigerian Journal of Clinical Practice, doi:10.4103/njcp.njcp_873_23
Background: The COVID-19 pandemic caused by SARS-CoV-2 is an unparalleled health risk, needing fast antiviral medication development. One of the most effective strategies for developing therapies against novel and emerging viruses is drug repurposing. Recently, systems biology approaches toward the discovery of repurposing medications are gaining prominence. Aim: This study aimed to implement a systems biology approach to identify crucial drug targets as well as potential drug candidates against COVID infection. Methods: Our approach utilizes differential gene expression in COVID conditions that enable the construction of a protein-protein interaction (PPI) network. Core clusters were extracted from this network, followed by molecular enrichment analysis. This process identified critical drug targets and potential drug candidates targeting various stages of COVID-19 infection. Results: The network was built using the top 200 differently expressed genes in mild, moderate, and severe COVID-19 infections. Top 3 clusters for each disease condition were identified, representing the core mechanism of the network. Molecular enrichment revealed the majority of the pathways in the mild state were associated with transcription regulation, protein folding, angiogenesis, and cytokine-signaling pathways. Whereas, the enriched pathways in moderate and severe disease states were predominately linked with the immune system and apoptotic processes, which include NF-kappaB signaling, cytokine signaling, TNF-mediated signaling, and oxidative stress-induced cell death. Further analysis identifies 28 potential drugs that can be repurposed to treat moderate and severe COVID-19, most of which are currently used in cancer treatment. Conclusion: Interestingly, some of the proposed drugs have demonstrated inhibitory effects against SARS-CoV-2, as supported by literature evidence. Overall, the drug repurposing method described here will help develop potential antiviral medications to treat emerging COVID strains.
Farag et al., Identification of FDA Approved Drugs Targeting COVID-19 Virus by Structure-Based Drug Repositioning, American Chemical Society (ACS), doi:10.26434/chemrxiv.12003930.v1
The new strain of Coronaviruses (SARS-CoV-2), and the resulting Covid-19 disease has spread swiftly across the globe after its initial detection in late December 2019 in Wuhan, China, resulting in a pandemic status declaration by WHO within 3 months. Given the heavy toll of this pandemic, researchers are actively testing various strategies including new and repurposed drugs as well as vaccines. In the current brief report, we adopted a repositioning approach using insilico molecular modeling screening using FDA approved drugs with established safety profiles for potential inhibitory effects on Covid-19 virus. We started with structure based drug design by screening more than 2000 FDA approved drugsagainst Covid-19 virus main protease enzyme (Mpro) substrate-binding pocket to identify potential hits based on their binding energies, binding modes, interacting amino acids, and therapeutic indications. In addition, we elucidate preliminary pharmacophore features for candidates bound to Covid-19 virus Mpro substratebinding pocket. The top hits include anti-viral drugs such as Darunavir, Nelfinavirand Saquinavir, some of which are already being tested in Covid-19 patients. Interestingly, one of the most promising hits in our screen is the hypercholesterolemia drug Rosuvastatin. These results certainly do not confirm or indicate antiviral activity, but can rather be used as a starting point for further in vitro and in vivo testing, either individually or in combination.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit