THAL-SNS032 for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
THAL-SNS032 may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed THAL-SNS032 in detail.
, PROTACs in Antivirals: Current Advancements and Future Perspectives, Molecules, doi:10.3390/molecules30163402
Proteolysis-targeting chimera (PROTAC) technology has demonstrated remarkable progress in tumor therapy, attributed to its unique capability of catalytically degrading “undruggable” targets. In the context of the ongoing global health threat posed by the Coronavirus Disease 2019 (COVID-19) pandemic, the application scope of PROTAC technology has been gradually extended to the field of antiviral research. Unlike traditional small molecule inhibitors, PROTAC employs an “event-driven” mechanism to achieve ubiquitination-mediated degradation of target proteins. This approach holds great promise in addressing challenges such as drug resistance, targeting host-dependent factors, and high-mutagenic viral proteins. This article provides a comprehensive review of the application progress of PROTAC technology in antiviral therapy, with a particular emphasis on successful cases across a range of viral pathogens, including Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), influenza virus, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Additionally, it delves into the challenges encountered in this field and ponders future development directions. Through the integration of the latest research findings, this article proposes a dual-target degradation strategy based on the host–pathogen interaction interface. These proposals aim to offer theoretical support for the clinical translation of antiviral PROTACs.