Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

TEAD for COVID-19

TEAD has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ohaekenyem et al., Activity profiling of natural and synthetic SARS-Cov-2 inhibitors using molecular docking analysis, Pure and Applied Chemistry, doi:10.1515/pac-2024-0012
Abstract COVID-19, the global pandemic caused by SARS-Corona virus 2 (SARS-CoV-2), recently ravaged the World with various efforts charged towards finding therapeutic drug targets for this novel virus. The identification of COVID-19 main protease (Mpro) opened the possibility of testing new families of inhibitors as potential anti-coronaviral drugs. Protein-drug interaction is of pivotal importance to understanding the structural features essential for any ligand affinity. This study evaluated the efficacy of an isolated bioactive plant compound and synthetic tetraazamacrocycles against COVID-19 Mpro by molecular docking. Molecular docking investigations were performed using PyRx, Auto Dock vina and Discovery Studio (DS) to analyze the inhibition probability of these compounds against COVID-19. COVID-19 Mpro (PDB ID: 6LU7: Resolution 2.16 Å) was docked with 1 flavonoid and 3 tetraaza-macrocyclic compounds comparatively with known anti-viral drugs (Remdesivir (REMD) and Nelfinavir (NELF)) and hydroxychloroquine (HCQ). Docking studies showed H-TEAD, 5 interacting with 5 residues having the highest binding affinity of −9.4 kcal/mol, followed by TEAD with 5 residue interactions and a binding affinity value of −9.4 kcal/mol, HA-TEAD, 7 has 5 interactions with a binding affinity of −9.3 kcal/mol, and Siam1 has 6 interactions with a binding energy of −7.8 kcal/mol. All the docked potential drugs have binding energies higher than the reference drugs HCQ, 1 and REMD, 2 connoting greater activity except NELF, 3 whose value is only lower than the 3 macrocycles (HA-TEAD, 7 and H-TEAD, 5 and TEA1, 6). They are bound through hydrogen bonds, arene-anion and arene-cation interactions. The trend of binding affinity show H-TEAD (−9.4 kcal/mol) = TEAD1 (−9.4 kcal/mol) > HA-TEAD (−9.3 kcal/mol) > NELF (−8.7 kcal/mol) > Siamone (−8.8 kcal/mol) > HCQ (−7.2 kcal/mol) > REMD (−6.2 kcal/mol) while the number of interactions shows REMD > HA-TEAD = HCQ > Siamone > NELF > H-TEAD > TEAD1. This study, hence, validates the activity of HCQ against COVID-19 and provides a foundation for advanced experimental research, to evaluate the real pharmaceutical potentials of these compounds, towards finding a cure for COVID-19 and other related diseases.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit