TCHB for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
TCHB may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed TCHB in detail.
, Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, Molecules, doi:10.3390/molecules27186127
The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10−4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids’ alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids’ inhibitory effects on SARS-CoV-2 Mpro.