Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Paxlovid Meta
Famotidine Meta Quercetin Meta
Favipiravir Meta Remdesivir Meta
Fluvoxamine Meta Thermotherapy Meta
Hydroxychlor.. Meta
Ivermectin Meta

Taroxaz-104 for COVID-19

Taroxaz-104 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Comunale et al., The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic, Viruses, doi:10.3390/v15122316
Background: As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. Methods: A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. Results: Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. Conclusions: Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Onyango, O., In Silico Models for Anti-COVID-19 Drug Discovery: A Systematic Review, Advances in Pharmacological and Pharmaceutical Sciences, doi:10.1155/2023/4562974
The coronavirus disease 2019 (COVID-19) is a severe worldwide pandemic. Due to the emergence of various SARS-CoV-2 variants and the presence of only one Food and Drug Administration (FDA) approved anti-COVID-19 drug (remdesivir), the disease remains a mindboggling global public health problem. Developing anti-COVID-19 drug candidates that are effective against SARS-CoV-2 and its various variants is a pressing need that should be satisfied. This systematic review assesses the existing literature that used in silico models during the discovery procedure of anti-COVID-19 drugs. Cochrane Library, Science Direct, Google Scholar, and PubMed were used to conduct a literature search to find the relevant articles utilizing the search terms “In silico model,” “COVID-19,” “Anti-COVID-19 drug,” “Drug discovery,” “Computational drug designing,” and “Computer-aided drug design.” Studies published in English between 2019 and December 2022 were included in the systematic review. From the 1120 articles retrieved from the databases and reference lists, only 33 were included in the review after the removal of duplicates, screening, and eligibility assessment. Most of the articles are studies that use SARS-CoV-2 proteins as drug targets. Both ligand-based and structure-based methods were utilized to obtain lead anti-COVID-19 drug candidates. Sixteen articles also assessed absorption, distribution, metabolism, excretion, toxicity (ADMET), and drug-likeness properties. Confirmation of the inhibitory ability of the candidate leads by in vivo or in vitro assays was reported in only five articles. Virtual screening, molecular docking (MD), and molecular dynamics simulation (MDS) emerged as the most commonly utilized in silico models for anti-COVID-19 drug discovery.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit