Sargassum wightii for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Sargassum wightii may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Sargassum wightii in detail.
, Screening of Antiviral Efficacy of Few Seaweeds of Tamil Nadu Coast, Proceedings of Anticancer Research, doi:10.26689/par.v7i5.5161
Lately there has been a lot of interest worldwide in studies on the antiviral activities of marine natural secondary metabolites, notably marine polysaccharides. It has been established that polysaccharides made from marine sources and their derivatives have antiviral effects against potent viruses. Agricultural, biological, food, and pharmaceutical industries all make extensive use of goods obtained from algae. The most well-known chemical components found in algae are polysaccharides, which have been the subject of a variety of studies because of their varied bioactivities. Polysaccharides made from algae have recently risen to the top of pharmaceutical research due to their fascinating antiviral potential. Currently, COVID-19 can be prevented with vaccination, but the brown alga Sargassum wightii has several bioactive compounds that have the following qualities and may be a better option. S. wightii is one of the marine algae species that is rich in sulfated polysaccharides, the secondary metabolites which have antiviral action and the capacity to prevent viral proliferation. Fucoidan, a long-chain sulfated polysaccharide found in various brown algae, has potent antiviral effects. Additionally, sulfated polysaccharides from green algae (such as ulvans) and red algae (such as carrageenan), and lectins from red algae (such as griffithsin) have antiviral therapeutic agents against coronaviruses and other viruses. This research focuses on screening seaweeds for possible antiviral compounds to treat viral infections notably COVID-19.