S-allyl-cysteine for COVID-19

COVID-19 involves the interplay of over 200 viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed over 10,000 potential treatments.
c19early.org analyzes
170+ treatments.
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases, Current Issues in Molecular Biology, doi:10.3390/cimb47070577
,
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2.
Aged Garlic Extract (AGE) and Its Constituent S-Allyl-Cysteine (SAC) Inhibit the Expression of Pro-Inflammatory Genes Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein and the BNT162b2 Vaccine, Molecules, doi:10.3390/molecules29245938
,
Garlic (Allium sativum L.) is a species of the onion family (Alliaceae) widely used as a food and a folk medicine. The objective of this study was to determine the effects of AGE (aged garlic extract) on pro-inflammatory genes relevant to COVID-19. To this aim, we treated bronchial epithelial IB3-1 cells with SARS-CoV-2 spike protein (S-protein) or with the COVID-19 BNT162b2 vaccine in the absence or in the presence of AGE. The results obtained demonstrated that AGE is a potent inhibitor of the S-protein-induced expression of the IL-1β, IL-6 and IL-8 genes. Bio-Plex analysis demonstrated that AGE reduced release of IL-6 and IL-8, which were highly induced by S-protein. No inhibition of cells’ growth, toxicity and pro-apoptotic effects were found in AGE-treated cells. The effects of one of the major AGE constituents (S-allyl cysteine, SAC) were studied on the same experimental model systems. SAC was able to inhibit the S-protein-induced expression of IL-1β, IL-6 and IL-8 genes and extracellular release of IL-6 and IL-8, confirming that S-allyl-cysteine is one of the constituents of AGE that is responsible for inhibiting S-protein-induced pro-inflammatory genes. Docking experiments suggest that a possible mechanism of action of SAC is an interference with the activity of Toll-like receptors (TLRs), particularly TLR4, thereby inhibiting NF-κB- and NF-κB-regulated genes, such as IL-1β, IL-6 and IL-8 genes. These results suggest that both AGE and SAC deserve further experimental efforts to verify their effects on pro-inflammatory genes in SARS-CoV-2-infected cells.
Please send us corrections, updates, or comments.
c19early involves the extraction of 200,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. IMA and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.