Rhodatin for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Rhodatin may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed rhodatin in detail.
, Computational Screening of Natural Compounds as Antiviral Candidates Targeting the SARS-CoV-2 Main Protease, Journal of Integrated OMICS, doi:10.5584/jiomics.v14i3.234
The onset of the global pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wuhan in December 2019 has led to an urgent need for effective preventive and therapeutic solutions. Among the various approaches explored, natural products have shown potential in the fight against COVID-19. This study employed computational techniques to screen and evaluate six natural antiviral compounds for their effectiveness against the SARS-CoV-2 Main Protease (Mpro). By using molecular docking simulations, the interactions between these natural compounds and the target proteins were predicted and analyzed, focusing on factors such as binding affinity, interaction patterns, and structural compatibility within the active sites. The analysis indicated that Cladosin C and Rhodatin formed the most stable interactions with Mpro, engaging with several critical residues. Cannabidiol, Capsaicin, and Kappa-Carrageenan also demonstrated promising interactions, though with some variability. On the other hand, Astaxanthin exhibited the least stable binding, suggesting limited antiviral potential. This research provides insights into the possible roles of these natural compounds as antagonists of the SARS-CoV-2 Mpro enzyme. Further in vitro and in vivo studies are necessary to confirm the antiviral properties of these compounds, and future research should investigate their broader antiviral applications.