Pyrimethamine for COVID-19

COVID-19 involves the interplay of 300+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 10,000+ potential treatments.
c19early.org analyzes
170+ treatments.
Repurposed antiviral medicines for potential pandemic viruses: A horizon scan, medRxiv, doi:10.1101/2025.09.09.25335403
,
Abstract Background Viruses such as Ebola, Marburg, influenza, mpox, MERS-CoV, SARS-CoV, and SARS-CoV-2 pose a significant risk for future pandemics. Developing novel antiviral medicines can be time-consuming and resource intensive. Repurposing existing medicines with antiviral activity offers a faster, cost-effective strategy to expand treatment options during public health emergencies. This scan aimed to identify and synthesise recent evidence on repurposed antiviral medicines under investigation for these viruses. Method A horizon scanning approach was employed, starting with a targeted search in Embase, followed by a systematic search of ClinicalTrials.gov to capture the developmental stages of the technologies. Eligible technologies included UK- or EU-licensed medicines repurposed as antiviral therapies for the viruses of interest. Vaccines, unlicensed medicines, and already approved treatments for the targeted viruses were excluded. Results A total of 196 repurposed technologies targeting the viruses were identified from published literature, and the expanded search on the clinical trials registry yielded 58 technologies in active clinical development. Interventional clinical trial activity was limited to influenza and COVID-19, with 29 technologies for COVID-19 and two for influenza advancing to phase III evaluation. For other viruses, proposed antiviral candidates were identified in the literature but had not progressed into clinical development. Commonly investigated pharmacological classes included direct-acting antivirals, tyrosine kinase inhibitors, immunomodulators, and anti-inflammatory agents. Conclusion Repurposing antiviral medicines represents a pragmatic strategy for rapid therapeutic deployment against emerging viral threats. Collaboration among researchers, policymakers, research funders, and regulatory bodies will be essential to improve pandemic preparedness and support repurposing efforts in emergency situations.
An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds, Scientific Reports, doi:10.1038/s41598-023-35671-x
,
AbstractThe recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.
Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms231911851
,
SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.
Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, bioRxiv, doi:10.1101/2022.03.24.485618
,
The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on \emph{knowledge graphs}, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi {\sl et al.} recently developed the \drcov \ model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the \drcov \ model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware --- we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
Please send us corrections, updates, or comments.
c19early involves the extraction of 200,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. IMA and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.