Phytic acid for COVID-19

Phytic acid may be beneficial for COVID-19 according to the studies below. COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 11,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed phytic acid in detail.
Fadel et al., Targeting asparagine and cysteine in SARS-CoV-2 variants and human pro-inflammatory mediators to alleviate COVID-19 severity; a cross-section and in-silico study, Scientific Reports, doi:10.1038/s41598-025-19359-y
Abstract To date, COVID-19 continues to pose a global health challenge, with substantial morbidity, mortality, and long-term post-COVID-19 complications threatening public health resilience. During the early pandemic, the IL-6 inhibitor (tocilizumab) was the widely used approved immunotherapy for critically ill patients; however, a subset of ICU cases exhibited normal interleukin-6 (IL-6) levels and failed to respond. We hypothesized that interleukin-17 (IL-17), which acts synergistically with IL-6, contributes to cytokine storm progression and severe inflammation. Our study uniquely integrates a clinical cross-sectional analysis with advanced in-silico modelling, directly linking patient-derived biomarker, radiological, and statistical data to molecular-level mechanisms of COVID-19 severity. Serum IL-17 was significantly elevated in critical versus moderate COVID-19 cases, with a threshold of 187.9 ng/mL predicting poor outcomes by ROC analysis. Logistic regression identified age and monocytes as independent predictors of severity, supporting a combined biomarker approach for improving the prognosis and clinical outcomes. Radiological findings, including ground-glass opacities and consolidations, alongside hematological abnormalities, were more frequent in critical cases. Computational docking revealed key amino acid residues—particularly asparagine (Asn) and cysteine (Cys)—as structural determinants shared by SARS-CoV-2 spike protein and human inflammatory mediators (IL-17R, IL-6R, CD41/CD61, CD47/SIRP). Asparaginase (ASNase) targeted critical residues such as the invariant gate residue “Asn343” and Cys213 of spike protein, Asn240 of IL-17R, and Asn136 of IL-6R. Several phytochemicals, including phytic acid and amygdalin, as well as synthetic agents such as candesartan, remdesivir, and enalapril, were found to preferentially bind to cysteine (Cys) residues—and, to a lesser extent, asparagine (Asn) residues—within key binding interfaces, in addition to targeting B-cell epitopes. This conserved residue preference supports the rationale for a dual-action therapeutic strategy in which asparaginase (ASNase) is combined with selected plant-derived ligands to simultaneously disrupt viral entry mechanisms and attenuate the inflammatory signalling. This dual-perspective approach not only identified IL-17 and IL-6 as independent severity predictors but also revealed conserved Asn and Cys motifs as critical therapeutic targets, leading to novel strategies—such as ASNase, synthetic agents and phytochemical combinations—for simultaneously blocking viral entry and modulating hyperinflammatory pathways. These findings warrant rigorous experimental and clinical validation to facilitate translation into effective therapeutic interventions.
Motyl et al., SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms, International Journal of Molecular Sciences, doi:10.3390/ijms252212079
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson’s disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation—and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms—it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms.
Schake et al., An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds, Scientific Reports, doi:10.1038/s41598-023-35671-x
AbstractThe recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.