Phenformin for COVID-19

Phenformin has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed phenformin in detail.
Kumar et al., Advancements in the development of antivirals against SARS-Coronavirus, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2025.1520811
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused an outbreak in 2002-2003, spreading to 29 countries with a mortality rate of about 10%. Strict quarantine and infection control methods quickly stopped the spread of the disease. Later research showed that SARS-CoV came from animals (zoonosis) and stressed the possibility of a similar spread from host to human, which was clearly shown by the COVID-19 outbreak. The COVID-19 pandemic, instigated by SARS-CoV-2, has affected 776 million confirmed cases and more than seven million deaths globally as of Sept 15, 2024. The existence of animal reservoirs of coronaviruses continues to pose a risk of re-emergence with improved fitness and virulence. Given the high death rate (up to 70 percent) and the high rate of severe sickness (up to 68.7 percent in long-COVID patients), it is even more critical to identify new therapies as soon as possible. This study combines research on antivirals that target SARS coronaviruses that have been conducted over the course of more than twenty years. It is a beneficial resource that might be useful in directing future studies.
Smith et al., Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface, American Chemical Society (ACS), doi:10.26434/chemrxiv.11871402.v4
The novel Wuhan coronavirus (SARS-CoV-2) has been sequenced, and the virus shares substantial similarity with SARS-CoV. Here, using a computational model of the spike protein (S-protein) of SARS-CoV-2 interacting with the human ACE2 receptor, we make use of the world's most powerful supercomputer, SUMMIT, to enact an ensemble docking virtual high-throughput screening campaign and identify small-molecules which bind to either the isolated Viral S-protein at its host receptor region or to the S protein-human ACE2 interface. We hypothesize the identified small-molecules may be repurposed to limit viral recognition of host cells and/or disrupt host-virus interactions. A ranked list of compounds is given that can be tested experimentally.