Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Pefloxacin for COVID-19

Pefloxacin has been reported as potentially beneficial for COVID-19 in the following study. We have not reviewed pefloxacin in detail.
COVID-19 involves the interplay of 300+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 170+ treatments.
Luo et al., Uncovering Overlapping Gene Networks and Potential Therapeutic Targets in Osteoporosis and COVID‐19 Through Bioinformatics Analysis, International Journal of Endocrinology, doi:10.1155/ije/8816596
Background: Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID‐19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID‐19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.Methods: Publicly available gene expression datasets GSE164805 (osteoporosis) and GSE230665 (COVID‐19) were analyzed to identify overlapping DEGs. Functional enrichment analysis using Gene Ontology (GO), pathway analysis, protein–protein interaction (PPI) network construction, and transcription factor (TF)–hub gene regulatory network analysis were performed to explore the biological significance and regulatory mechanisms of these DEGs.Results: A total of 325 common DEGs were identified between osteoporosis and COVID‐19. GO enrichment analysis revealed significant involvement in signal transduction and plasma membrane components. Pathway analysis highlighted the “cytokine–cytokine receptor interaction” pathway as a central player. PPI network analysis identified a module of 193 genes with 397 interactions, from which 10 key hub genes were prioritized: ACTB, CDH1, RPS8, IFNG, RPL17, UBC, RPL36, RPS4Y1, GSK3B, and FGF13. Furthermore, 76 TFs were found to regulate these hub genes, and 15 existing drugs targeting four of these hub genes were identified.Conclusion: This integrative bioinformatics study reveals 15 candidate therapeutic agents that target key regulatory genes shared between osteoporosis and COVID‐19, offering promising treatment strategies for osteoporotic patients, especially those impacted by or at risk of SARS‐CoV‐2​ infection.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit