Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Ofloxacin for COVID-19

Ofloxacin has been reported as potentially beneficial for COVID-19 in the following studies. We have not reviewed ofloxacin in detail.
COVID-19 involves the interplay of 300+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 170+ treatments.
Akinbolade et al., Repurposed antiviral medicines for potential pandemic viruses: A horizon scan, medRxiv, doi:10.1101/2025.09.09.25335403
Abstract Background Viruses such as Ebola, Marburg, influenza, mpox, MERS-CoV, SARS-CoV, and SARS-CoV-2 pose a significant risk for future pandemics. Developing novel antiviral medicines can be time-consuming and resource intensive. Repurposing existing medicines with antiviral activity offers a faster, cost-effective strategy to expand treatment options during public health emergencies. This scan aimed to identify and synthesise recent evidence on repurposed antiviral medicines under investigation for these viruses. Method A horizon scanning approach was employed, starting with a targeted search in Embase, followed by a systematic search of ClinicalTrials.gov to capture the developmental stages of the technologies. Eligible technologies included UK- or EU-licensed medicines repurposed as antiviral therapies for the viruses of interest. Vaccines, unlicensed medicines, and already approved treatments for the targeted viruses were excluded. Results A total of 196 repurposed technologies targeting the viruses were identified from published literature, and the expanded search on the clinical trials registry yielded 58 technologies in active clinical development. Interventional clinical trial activity was limited to influenza and COVID-19, with 29 technologies for COVID-19 and two for influenza advancing to phase III evaluation. For other viruses, proposed antiviral candidates were identified in the literature but had not progressed into clinical development. Commonly investigated pharmacological classes included direct-acting antivirals, tyrosine kinase inhibitors, immunomodulators, and anti-inflammatory agents. Conclusion Repurposing antiviral medicines represents a pragmatic strategy for rapid therapeutic deployment against emerging viral threats. Collaboration among researchers, policymakers, research funders, and regulatory bodies will be essential to improve pandemic preparedness and support repurposing efforts in emergency situations.
Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, Briefings in Bioinformatics, doi:10.1093/bib/bbab114
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts’ curation and drug–target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit