Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

NTZ-Cu(II) for COVID-19

NTZ-Cu(II) has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Sharfalddin et al., Investigating the Biological Potency of Nitazoxanide-Based Cu(II), Ni(II) and Zn(II) Complexes Synthesis, Characterization and Anti-COVID-19, Antioxidant, Antibacterial and Anticancer Activities, Molecules, doi:10.3390/molecules28166126
In this work, the biological potency of nitazoxanide (NTZ) was enhanced through coordination with transition metal ions Cu(II), Ni(II), and Zn(II). Initially, complexes with a ligand-metal stoichiometry of 2:1 were successfully synthesized and characterized by spectroscopic techniques and thermogravimetric methods. Measurement of the infrared spectrum revealed the bidentate nature of the ligand and excluded the possibility of the metal ion—amide group interaction. Nuclear magnetic resonance spectra showed a reduction in the NH- intensity signal and integration, indicating the possibility of enolization and the formation of keto-enol tautomers. To interpret these results, density functional theory was utilized under B3LYP/6-311G** for the free ligand and B3LYP/LANL2DZ for the metal complexes. We used UV-Vis and fluorescence spectroscopy to understand the biological properties of the complexes. This showed stronger interactions of NTZ-Cu(II) and NTZ-Ni(II) with DNA molecules than the NTZ-Zn(II) compound, with a binding constant (Kb) for the copper complex of 7.00 × 105 M−1. Both Cu(II)- and Ni(II)-NTZ had functional binding to the SARS-CoV-2 (6LU7) protease. Moreover, all metal complexes showed better antioxidation properties than the free ligand, with NTZ-Ni(II) having the best IC50 value of 53.45 μg/mL. NTZ-Ni(II) was an effective antibacterial, with a mean inhibitory concentration of 6 μM, which is close to that of ampicillin (a reference drug). The metal complexes had moderated anticancer potencies, with NTZ-Cu(II) having IC50 values of 24.5 and 21.5 against human breast cancer cells (MCF-7) and cancerous cervical tumor cells (HeLa), respectively. All obtained complexes exhibited high selectivity. Finally, the metal ions showed a practical role in improving the biological effectiveness of NTZ molecules.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit