Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

Nisoldipine for COVID-19

Nisoldipine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Voloudakis et al., A genetically based computational drug repurposing framework for rapid identification of candidate compounds: application to COVID-19, medRxiv, doi:10.1101/2025.01.10.25320348
Background The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge. Methods To benchmark the drug repurposing framework, we first performed a 5-method-rank-based computational drug prioritization pipeline by integrating multi-tissue GReX associated with COVID-19-related hospitalization, with drug transcriptional signature libraries from the Library of Integrated Network-Based Cellular Signatures. We prioritized FDA-approved medications from the 10 top-ranked compounds, and assessed their association with COVID-19 incidence within the Veterans Health Administration (VHA) cohort (~9 million individuals). In parallel, we evaluated in vitro SARS-CoV-2 replication inhibition in human lung epithelial cells for the selected candidates. Results Our in silico pipeline identified seven FDA-approved drugs among the top ten candidates. Six (imiquimod, nelfinavir and saquinavir, everolimus, azathioprine, and retinol) had sufficient prescribing rates or feasibility for further testing. In the VHA cohort, azathioprine (odds ratio [OR]=0.69, 95% CI 0.62-0.77) and retinol (OR=0.81, 95% CI 0.72-0.92) were significantly associated with reduced COVID-19 incidence. Conversely, nelfinavir and saquinavir demonstrated potent SARS-CoV-2 inhibition in vitro (~95% and ~65% viral load reduction, respectively). No single compound showed robust protection in both in vivo and in vitro settings. Conclusions These findings underscore the power of GReX-based drug repurposing in rapidly identifying existing therapies with potential clinical relevance; four out of six compounds showed a protective effect in one of the two validation approaches. Crucially, our results highlight how a complementary evaluation-combining epidemiological data and in vitro assays-helps refine the most promising candidates for subsequent mechanistic studies and clinical trials. This integrated validation approach may prove vital for accelerating therapeutic development against current and future health challenges.
Xing et al., Analysis of Infected Host Gene Expression Reveals Repurposed Drug Candidates and Time-Dependent Host Response Dynamics for COVID-19, bioRxiv, doi:10.1101/2020.04.07.030734
SummaryThe repurposing of existing drugs offers the potential to expedite therapeutic discovery against the current COVID-19 pandemic caused by the SARS-CoV-2 virus. We have developed an integrative approach to predict repurposed drug candidates that can reverse SARS-CoV-2-induced gene expression in host cells, and evaluate their efficacy against SARS-CoV-2 infection in vitro. We found that 13 virus-induced gene expression signatures computed from various viral preclinical models could be reversed by compounds previously identified to be effective against SARS- or MERS-CoV, as well as drug candidates recently reported to be efficacious against SARS-CoV-2. Based on the ability of candidate drugs to reverse these 13 infection signatures, as well as other clinical criteria, we identified 10 novel candidates. The four drugs bortezomib, dactolisib, alvocidib, and methotrexate inhibited SARS-CoV-2 infection-induced cytopathic effect in Vero E6 cells at < 1 µM, but only methotrexate did not exhibit unfavorable cytotoxicity. Although further improvement of cytotoxicity prediction and bench testing is required, our computational approach has the potential to rapidly and rationally identify repurposed drug candidates against SARS-CoV-2. The analysis of signature genes induced by SARS-CoV-2 also revealed interesting time-dependent host response dynamics and critical pathways for therapeutic interventions (e.g. Rho GTPase activation and cytokine signaling suppression).
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit