Niraparib for COVID-19
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 10,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed niraparib in detail.
, Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, Frontiers in Pharmacology, doi:10.3389/fphar.2020.592737
Drug repurposing is a rapid approach to identify therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drugs and 49 investigational drugs. The anti-SARS-CoV-2 activities of 230 of these confirmed compounds, of which 38 are approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA-approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set is a useful resource for drug repurposing efforts, including design of new drug combinations for clinical trials for SARS-CoV-2.
, Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, International Journal of Molecular Sciences, doi:10.3390/ijms231911009
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the pathogenic cause of coronavirus disease 2019 (COVID-19). The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a potential target for the treatment of COVID-19. An RdRp complex:dsRNA structure suitable for docking simulations was prepared using a cryo-electron microscopy (cryo-EM) structure (PDB ID: 7AAP; resolution, 2.60 Å) that was reported recently. Structural refinement was performed using energy calculations. Structure-based virtual screening was performed using the ChEMBL database. Through 1,838,257 screenings, 249 drugs (37 approved, 93 clinical, and 119 preclinical drugs) were predicted to exhibit a high binding affinity for the RdRp complex:dsRNA. Nine nucleoside triphosphate analogs with anti-viral activity were included among these hit drugs, and among them, remdesivir-ribonucleoside triphosphate and favipiravir-ribonucleoside triphosphate adopted a similar docking mode as that observed in the cryo-EM structure. Additional docking simulations for the predicted compounds with high binding affinity for the RdRp complex:dsRNA suggested that 184 bioactive compounds could be anti-SARS-CoV-2 drug candidates. The hit bioactive compounds mainly consisted of a typical noncovalent major groove binder for dsRNA. Three-layer ONIOM (MP2/6-31G:AM1:AMBER) geometry optimization calculations and frequency analyses (MP2/6-31G:AMBER) were performed to estimate the binding free energy of a representative bioactive compound obtained from the docking simulation, and the fragment molecular orbital calculation at the MP2/6-31G level of theory was subsequently performed for analyzing the detailed interactions. The procedure used in this study represents a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that could significantly shorten the clinical development period for drug repositioning.