Neu5Ac2en-OAcOMe for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Neu5Ac2en-OAcOMe may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Neu5Ac2en-OAcOMe in detail.
, The Role of NEU1 in Coronavirus Infection and Pathogenesis, Virology & Immunology Journal, doi:10.23880/vij-16000351
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic, resulting in millions of infections and deaths worldwide. Although vaccines are available, they appear to be less efficacious against newly emerging variants of the virus. Thus, therapeutic modalities are urgently needed. The coronavirus genome encodes four major structural proteins: the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and envelope (E) protein, all of which are required to produce a structurally complete viral particle. N protein is one of the most abundant structural proteins, participates in the regulation of viral replication and virion assembly, and is a major immunogen in coronavirus infection-induced disease. Sialylation is the addition of sialic acids to the terminal glycans of glycoproteins and glycolipids, which act as key components for biological functions of glycoproteins or glycolipids. Sialidases (or neuraminidases) are glycosidases that remove sialic acid residues (desialylation) from glycan portions of glycoproteins or glycolipids. Through desialylation, sialidases modulate the functionality of sialic acid-containing molecules and are involved in both physiological and pathological pathways. This review aims to explore the current understanding of NEU1's involvement in coronavirus infection and pathogenesis, synthesizing available research and identifying areas for future investigation.