Methyl stearate for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Methyl stearate may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed methyl stearate in detail.
, Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, Pakistan BioMedical Journal, doi:10.54393/pbmj.v6i3.853
SARS-CoV-2 was first identified in Wuhan, China in December 2019 and has rapidly devastated worldwide. The lack of approved therapeutic drugs has intensified the global situation, so researchers are seeking potential treatments using regular drug agents and traditional herbs as well. Objectives: To identify new therapeutic agents from Nigella sativa against spike protein (PDB ID: 7BZ5) of SARS-CoV-2. Methods: The 46 compounds from N. sativa were docked with spike protein using Molecular Operating Environment (MOE) software and compared with commercially available anti-viral drugs e.g., Arbidol, Favipiravir, Remdesivir, Nelfinavir, Chloroquine, Hydroxychloroquine. The Molecular Dynamic Simulation (MDS) analysis was also applied to determine ligand-protein complex stability. Furthermore, the pharmacological properties of compounds were also analyzed using AdmetSAR and SwissADME. Results: Out of its total 46 ligands, 8 compounds i.e., Methyl stearate, Eicosadienoic acid, Oleic acid, Stearic acid, Linoleic acid, Myristoleic acid, Palmitic acid, and Farnesol were selected for further analysis based on their minimum binding energy ranges from -7.45 to -7.07 kcal/mol. The docking scores of N. sativa phytocompounds were similar to drugs taken as control. Moreover, post simulation analysis of Methyl stearate complex predicted the most stable conformer. Conclusions: Further, in-vivo experiments are suggested to validate the medicinal use of Methyl stearate as potential inhibitors against spike protein of SARS-CoV-2.