Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Limonin for COVID-19

Limonin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Azeem et al., Structure based screening and molecular docking with dynamic simulation of natural secondary metabolites to target RNA-dependent RNA polymerase of five different retroviruses, PLOS ONE, doi:10.1371/journal.pone.0307615
Viral diseases pose a serious global health threat due to their rapid transmission and widespread impact. The RNA-dependent RNA polymerase (RdRp) participates in the synthesis, transcription, and replication of viral RNA in host. The current study investigates the antiviral potential of secondary metabolites particularly those derived from bacteria, fungi, and plants to develop novel medicines. Using a virtual screening approach that combines molecular docking and molecular dynamics (MD) simulations, we aimed to discover compounds with strong interactions with RdRp of five different retroviruses. The top five compounds were selected for each viral RdRp based on their docking scores, binding patterns, molecular interactions, and drug-likeness properties. The molecular docking study uncovered several metabolites with antiviral activity against RdRp. For instance, cytochalasin Z8 had the lowest docking score of –8.9 (kcal/mol) against RdRp of SARS-CoV-2, aspulvinone D (–9.2 kcal/mol) against HIV-1, talaromyolide D (–9.9 kcal/mol) for hepatitis C, aspulvinone D (–9.9 kcal/mol) against Ebola and talaromyolide D also maintained the lowest docking score of –9.2 kcal/mol against RdRp enzyme of dengue virus. These compounds showed remarkable antiviral potential comparable to standard drug (remdesivir –7.4 kcal/mol) approved to target RdRp and possess no significant toxicity. The molecular dynamics simulation confirmed that the best selected ligands were firmly bound to their respective target proteins for a simulation time of 200 ns. The identified lead compounds possess distinctive pharmacological characteristics, making them potential candidates for repurposing as antiviral drugs against SARS-CoV-2. Further experimental evaluation and investigation are recommended to ascertain their efficacy and potential.
Fan et al., Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities, Acta Pharmaceutica, doi:10.2478/acph-2023-0014
Abstract SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit