Lespebuergine G4 for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Lespebuergine G4 may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed lespebuergine G4 in detail.
, Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease, Plants, doi:10.3390/plants13233319
Despite the now infamous coronavirus disease outbreaks caused by severe acute respiratory syndrome coronavirus (SARS-CoV), this virus continues to be a threat to the global population. Although a huge research effort has targeted SARS-CoV, no report exists regarding natural small molecules targeting one of its key enzymes, papain-like protease (PLpro). In this study, nine flavonoids displaying SARS-CoV PLpro inhibitory activity were isolated from the root bark of Lespedeza bicolor. The compounds were identified as erythrabyssin II (1), lespebuergine G4 (2), 1-methoxyerythrabyssin II (3), bicolosin A (4), bicolosin B (5), bicolosin (6), xanthoangelol (7), (±)-lespeol (8), and parvisoflavanone (9). Most compounds (1–4 and 6–8) inhibited SARS-CoV PLpro activity in a dose-dependent manner, with their Kis ranging from 5.56 to 75.37 μM. The structure–activity analysis of pterocarpans (1–6) showed that activity was enhanced by C1-OCH3, but it was reduced by C8-CH3. A mechanistic analysis revealed that all inhibitors were noncompetitive. Some of the key compounds isolated in this study are pterocarpans, which are abundantly present in the Leguminosae family. Overall, a rich source of SARS-CoV papain-like protease inhibitors was identified in this study.