LCB1 for COVID-19
LCB1 has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins, Frontiers in Nutrition, doi:10.3389/fnut.2024.1346510
,
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, Viruses, doi:10.3390/v15040820
,
Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide’s structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.