λ-carrageenan for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
λ-carrageenan may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed λ-carrageenan in detail.
, Anti-inflammatory potential of λ-carrageenan by inhibition of IL-6 receptor: in silico study, IOP Conference Series: Earth and Environmental Science, doi:10.1088/1755-1315/913/1/012106
Abstract In some cases, the immune system in COVID-19 patients leads to the release of excess cytokine production (cytokine storm), which will potentially develop into pneumonia. Interleukin 6 (IL-6) plays the role of pro-inflammatory cytokine, it is a receptor mediated signalling system. Macroalgae is well known as a source of valuable bioactive substances with potential biological activities. Among them is the sulphated polysaccharide lambda-carrageenan λ-CGN which has been reported as an anti-inflammatory agent. However, its mechanism of action against IL-6 production is currently unknown. This study aims to predict potential molecular mechanisms of λ-CGN chemical compound against IL-6 expression through in silico study. Chemical compound of λ-CGN and target protein in this study were obtained from the pubchem and protein data bank (PDB). The molecular docking prediction was conducted with PyRx software, the result is λ-CGN compound showing strong binding energy to bind target protein IL-6 receptor with the value of -5.9 kcal/mol. Based on the results of in silico study, the sulphated polysaccharide λ-CGN potentially inhibits IL-6R expression by binding ligand pocket with six conventional hydrogen bonds (amino acid residus: His256, His 257, Trp 219, Arg 231, and Asp 221) and two carbon hydrogen bonds (amino acid residus: THR 218 and GLN 220). Binding with these amino acid residues potentially contributes to IL-6 receptor structural change which could result in functional change. Hence, further studies related to in vitro and in vivo investigations would be interesting to further understand the inhibitory mechanism of λ-CGN against IL-6.