Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Kaurenoic acid for COVID-19

Kaurenoic acid has been reported as potentially beneficial for COVID-19 in the following study. We have not reviewed kaurenoic acid in detail.
COVID-19 involves the interplay of over 100 viral and host proteins and factors providing many therapeutic targets. Scientists have proposed over 9,000 potential treatments. c19early.org analyzes 160+ treatments.
Santos et al., Kaurenoic acid is a potent inhibitor of SARS-CoV-2 RNA synthesis, virion assembly, and release in vitro, Frontiers in Microbiology, doi:10.3389/fmicb.2025.1540934
IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the coronavirus disease 2019 (COVID-19) pandemic, continues to pose global health challenges despite the availability of approved vaccines and antiviral drugs. The emergence of new variants of SARS-CoV-2 and ongoing post-COVID complications necessitate continuous exploration of effective treatments. Kaurenoic acid (KA) is a tetracyclic diterpenoid isolated from plants of the Copaifera genus and has been previously recognized for its anti-inflammatory, antibacterial, antifungal, and antitumor properties. However, there is a lack of knowledge about the in vitro effects of KA on viruses. Here, we evaluated its effect on SARS-CoV-2 replication for the first time.Methods and ResultsKA demonstrated a high selective index of 16.1 against SARS-CoV-2 and robust effectiveness against the B.1.617.2 (Delta) and BA.2 (Omicron) variants. Mechanistically, KA was shown to impair the post-entry steps of viral replication. In a subgenomic replicon system, we observed a decrease in viral RNA synthesis in different cell lines. Using an infectious virus, a larger reduction in the release of SARS-CoV-2 virions was observed. We suggest that KA interacts with SARS-CoV-2 proteases through molecular docking.ConclusionIn conclusion, KA emerges as an inhibitor of SARS-CoV-2 proteases and, consequently, its replication cycle. It could be a good candidate for further investigation in clinical assays against SARS-CoV-2 infection.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit