Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Imperata cylindrica for COVID-19

Imperata cylindrica has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Tatsing Foka et al., Predictive Assessment of the Antiviral Properties of Imperata cylindrica against SARS‐CoV‐2, Advances in Virology, doi:10.1155/2024/8598708
The omicron variant and its sublineages are highly contagious, and they still constitute a global source of concern despite vaccinations. Hospitalizations and mortality rates resulting from infections by these variants of concern are still common. The existing therapeutic alternatives have presented various setbacks such as low potency, poor pharmacokinetic profiles, and drug resistance. The need for alternative therapeutic options cannot be overemphasized. Plants and their phytochemicals present interesting characteristics that make them suitable candidates for the development of antiviral therapeutic agents. This study aimed to investigate the antiviral potential of Imperata cylindrica (I. cylindrica). Specifically, the objective of this study was to identify I. cylindrica phytochemicals that display inhibitory effects against SARS‐CoV‐2 main protease (Mpro), a highly conserved protein among coronaviruses. Molecular docking and in silico pharmacokinetic assays were used to assess 72 phytocompounds that are found in I. cylindrica as ligands and Mpro (6LU7) as the target. Only eight phytochemicals (bifendate, cylindrene, tabanone, siderin, 5‐hydroxy‐2‐[2‐(2‐hydroxyphenyl)ethyl]‐4H‐1‐benzopyran‐4‐one, maritimin, 5‐methoxyflavone, and flavone) displayed high binding affinities with Mpro with docking scores ranging from −5.6 kcal/mol to −9.1 kcal/mol. The in silico pharmacokinetic and toxicological assays revealed that tabanone was the best and safest phytochemical for the development of an inhibitory agent against coronavirus main protease. Thus, the study served as a baseline for further in vitro and in vivo assessment of this phytochemical against Mpro of SARS‐CoV‐2 variants of concern to validate these in silico findings.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit