Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Imatinib for COVID-19

Imatinib has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Duijvelaar et al., Imatinib treatment improves hyperglycaemic dysregulation in severe COVID-19: a secondary analysis of blood biomarkers in a randomised controlled trial, Critical Care, doi:10.1186/s13054-024-04829-y
AbstractSARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.
Niarakis et al., Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches, Frontiers in Immunology, doi:10.3389/fimmu.2023.1282859
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Touret et al., In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication, bioRxiv, doi:10.1101/2020.04.03.023846
SummaryA novel coronavirus, named SARS-CoV-2, emerged in 2019 from Hubei region in China and rapidly spread worldwide. As no approved therapeutics exists to treat Covid-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time consuming stages of drug development. In this study, we screened the Prestwick Chemical Library® composed of 1,520 approved drugs in an infected cell-based assay. 90 compounds were identified. The robustness of the screen was assessed by the identification of drugs, such as Chloroquine derivatives and protease inhibitors, already in clinical trials. The hits were sorted according to their chemical composition and their known therapeutic effect, then EC50 and CC50 were determined for a subset of compounds. Several drugs, such as Azithromycine, Opipramol, Quinidine or Omeprazol present antiviral potency with 2<EC50<20µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study could contribute to the short-term repurposing of drugs against Covid-19.
Weston et al., Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo, bioRxiv, doi:10.1101/2020.03.25.008482
AbstractSARS-CoV-2 emerged in China at the end of 2019 and has rapidly become a pandemic with roughly 2.7 million recorded COVID-19 cases and greater than 189,000 recorded deaths by April 23rd, 2020 (www.WHO.org). There are no FDA approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA approved drugs. Rapid development and human testing of potential antivirals is greatly needed. A quick way to test compounds with potential antiviral activity is through drug repurposing. Numerous drugs are already approved for human use and subsequently there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV. We found that 17 of these inhibit SARS-CoV-2 at a range of IC50 values at non-cytotoxic concentrations. We directly follow up with seven of these to demonstrate all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we have evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found both drugs protect mice from clinical disease.
Han et al., Identification of Candidate COVID-19 Therapeutics using hPSC-derived Lung Organoids, bioRxiv, doi:10.1101/2020.05.05.079095
Summary ParagraphThe SARS-CoV-2 virus has caused already over 3.5 million COVID-19 cases and 250,000 deaths globally. There is an urgent need to create novel models to study SARS-CoV-2 using human disease-relevant cells to understand key features of virus biology and facilitate drug screening. As primary SARS-CoV-2 infection is respiratory-based, we developed a lung organoid model using human pluripotent stem cells (hPSCs) that could be adapted for drug screens. The lung organoids, particularly aveolar type II cells, express ACE2 and are permissive to SARS-CoV-2 infection. Transcriptomic analysis following SARS-CoV-2 infection revealed a robust induction of chemokines and cytokines with little type I/III interferon signaling, similar to that observed amongst human COVID-19 pulmonary infections. We performed a high throughput screen using hPSC-derived lung organoids and identified FDA-approved drug candidates, including imatinib and mycophenolic acid, as inhibitors of SARS-CoV-2 entry. Pre- or post-treatment with these drugs at physiologically relevant levels decreased SARS-CoV-2 infection of hPSC-derived lung organoids. Together, these data demonstrate that hPSC-derived lung cells infected by SARS-CoV-2 can model human COVID-19 disease and provide a valuable resource to screen for FDA-approved drugs that might be repurposed and should be considered for COVID-19 clinical trials.
Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, bioRxiv, doi:10.1101/2020.08.18.255877
AbstractDrug repurposing is a rapid approach to identifying therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drug and 49 investigational drugs. Among these confirmed compounds, the anti-SARS-CoV-2 activities of 230 compounds, including 38 approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set of drug repurposing screen for SARS-CoV-2 is useful for drug repurposing efforts including design of new drug combinations for clinical trials.
Ginex et al., Host-directed FDA-approved drugs with antiviral activity against SARS-CoV-2 identified by hierarchical in silico/in vitro screening methods, bioRxiv, doi:10.1101/2020.11.26.399436
AbstractThe unprecedent situation generated by the COVID-19 global emergency prompted us to actively work to fight against this pandemic by searching for repurposable agents among FDA approved drugs to shed light into immediate opportunities for the treatment of COVID-19 patients.In the attempt to proceed toward a proper rationalization of the search for new antivirals among approved drugs, we carried out a hierarchical in silico/in vitro protocol which successfully combines virtual and biological screening to speed up the identification of host-directed therapies against COVID-19 in an effective way.To this end a multi-target virtual screening approach focused on host-based targets related to viral entry followed by the experimental evaluation of the antiviral activity of selected compounds has been carried out. As a result, five different potentially repurposable drugs interfering with viral entry, cepharantine, clofazimine, metergoline, imatinib and efloxate, have been identified.
Bakowski et al., Drug repurposing screens identify chemical entities for the development of COVID-19 interventions, Nature Communications, doi:10.1038/s41467-021-23328-0
AbstractThe ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.
Bess et al., Identification of oral therapeutics using an AI platform against the virus responsible for COVID-19, SARS-CoV-2, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1297924
Purpose: This study introduces a sophisticated computational pipeline, eVir, designed for the discovery of antiviral drugs based on their interactions within the human protein network. There is a pressing need for cost-effective therapeutics for infectious diseases (e.g., COVID-19), particularly in resource-limited countries. Therefore, our team devised an Artificial Intelligence (AI) system to explore repurposing opportunities for currently used oral therapies. The eVir system operates by identifying pharmaceutical compounds that mirror the effects of antiviral peptides (AVPs)—fragments of human proteins known to interfere with fundamental phases of the viral life cycle: entry, fusion, and replication. eVir extrapolates the probable antiviral efficacy of a given compound by analyzing its established and predicted impacts on the human protein-protein interaction network. This innovative approach provides a promising platform for drug repurposing against SARS-CoV-2 or any virus for which peptide data is available.Methods: The eVir AI software pipeline processes drug-protein and protein-protein interaction networks generated from open-source datasets. eVir uses Node2Vec, a graph embedding technique, to understand the nuanced connections among drugs and proteins. The embeddings are input a Siamese Network (SNet) and MLPs, each tailored for the specific mechanisms of entry, fusion, and replication, to evaluate the similarity between drugs and AVPs. Scores generated from the SNet and MLPs undergo a Platt probability calibration and are combined into a unified score that gauges the potential antiviral efficacy of a drug. This integrated approach seeks to boost drug identification confidence, offering a potential solution for detecting therapeutic candidates with pronounced antiviral potency. Once identified a number of compounds were tested for efficacy and toxicity in lung carcinoma cells (Calu-3) infected with SARS-CoV-2. A lead compound was further identified to determine its efficacy and toxicity in K18-hACE2 mice infected with SARS-CoV-2.Computational Predictions: The SNet confidently differentiated between similar and dissimilar drug pairs with an accuracy of 97.28% and AUC of 99.47%. Key compounds identified through these networks included Zinc, Mebendazole, Levomenol, Gefitinib, Niclosamide, and Imatinib. Notably, Mebendazole and Zinc showcased the highest similarity scores, while Imatinib, Levemenol, and Gefitinib also ranked within the top 20, suggesting their significant pharmacological potentials. Further examination of protein binding analysis using explainable AI focused on reverse engineering the causality of the networks. Protein interaction scores for Mebendazole and Imatinib revealed their effects on notable proteins such as CDPK1, VEGF2, ABL1, and several tyrosine protein kinases.Laboratory Studies: This study determined that Mebendazole, Gefitinib, Topotecan and to some extent Carfilzomib showed conventional drug-response curves,..
Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, Frontiers in Pharmacology, doi:10.3389/fphar.2020.592737
Drug repurposing is a rapid approach to identify therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drugs and 49 investigational drugs. The anti-SARS-CoV-2 activities of 230 of these confirmed compounds, of which 38 are approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA-approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set is a useful resource for drug repurposing efforts, including design of new drug combinations for clinical trials for SARS-CoV-2.
Weston et al., Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo, Journal of Virology, doi:10.1128/jvi.01218-20
There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro . We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.
Yuan et al., The role of cell death in SARS-CoV-2 infection, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-023-01580-8
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Augustin et al., Drug repurposing for COVID-19: current evidence from randomized controlled adaptive platform trials and living systematic reviews, British Medical Bulletin, doi:10.1093/bmb/ldac037
Abstract Introduction The coronavirus disease 2019 (COVID-19) pandemic resulted in a race to develop effective treatments largely through drug repurposing via adaptive platform trials on a global scale. Drug repurposing trials have focused on potential antiviral therapies aimed at preventing viral replication, anti-inflammatory agents, antithrombotic agents and immune modulators through a number of adaptive platform trials. Living systematic reviews have also enabled evidence synthesis and network meta-analysis as clinical trial data emerge globally. Sources of data Recent published literature. Areas of agreement Corticosteroids and immunomodulators that antagonize the interleukin-6 (IL-6) receptor have been shown to play a critical role in modulating inflammation and improving clinical outcomes in hospitalized patients. Inhaled budesonide reduces the time to recovery in older patients with mild-to-moderate COVID-19 managed in the community. Areas of controversy The clinical benefit of remdesivir remains controversial with conflicting evidence from different trials. Remdesivir led to a reduction in time to clinical recovery in the ACTT-1 trial. However, the World Health Organization SOLIDARITY and DISCOVERY trial did not find a significant benefit on 28-day mortality and clinical recovery. Growing points Other treatments currently being investigated include antidiabetic drug empagliflozin, antimalarial drug artesunate, tyrosine kinase inhibitor imatinib, immunomodulatory drug infliximab, antiviral drug favipiravir, antiparasitic drug ivermectin and antidepressant drug fluvoxamine. Areas timely for developing research The timing of therapeutic interventions based on postulated mechanisms of action and the selection of clinically meaningful primary end points remain important considerations in the design and implementation of COVID-19 therapeutic trials.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Wang et al., Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations, Circulation Research, doi:10.1161/circresaha.122.321879
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, Frontiers in Microbiology, doi:10.3389/fmicb.2023.1132501
This article systematically presents the current clinically significant therapeutic developments for the treatment of COVID-19 by providing an in-depth review of molecular mechanisms of action for SARS-CoV-2 antivirals and critically analyzing the potential targets that may allow the selection of resistant viral variants. Two main categories of agents can display antiviral activity: direct-acting antivirals, which act by inhibiting viral enzymes, and host-directed antivirals, which target host cell factors that are involved in steps of the viral life cycle. We discuss both these types of antivirals, highlighting the agents that have already been approved for treatment of COVID-19, and providing an overview of the main molecules that are currently in drug development. Direct-acting antivirals target viral enzymes that are essential in the viral life cycle. Three direct-acting antivirals are currently in use: two are nucleoside analogs that inhibit the RNA-dependent RNA polymerase of SARS-CoV-2, i.e., remdesivir and molnupiravir, and the third one, nirmatrelvir/ritonavir, is an inhibitor of SARS-CoV-2 main protease. The potential for induction of viral resistance is discussed for each of these antivirals, along with their clinical activity on each of the SARS-CoV-2 variants and sublineages that have been dominant over the course of the pandemic, i.e., Alpha, Delta, as well as Omicron and its sublineages BA.1, BA.2, BA.5, BQ.1 and XBB. Host-directed antivirals are currently in preclinical or clinical development; these agents target host cell enzymes that are involved in facilitating viral entry, replication, or virion release. By blocking these enzymes, viral replication can theoretically be effectively stopped. As no SARS-CoV-2 host-directed antiviral has been approved so far, further research is still needed and we present the host-directed antivirals that are currently in the pipeline. Another specific type of agents that have been used in the treatment of COVID-19 are neutralizing antibodies (NAbs). Their main binding site is the spike protein, and therefore their neutralization activity is influenced by mutations occurring in this region. We discuss the main changes in neutralization activity of NAbs for the most important dominant SARS-CoV-2 variants. Close monitoring of emerging variants and sublineages is still warranted, to better understand the impact of viral mutations on the clinical efficiency of antivirals and neutralizing antibodies developed for the treatment of COVID-19.
Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2–host protein–protein interaction network, Briefings in Bioinformatics, doi:10.1093/bib/bbac456
Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus–host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)–host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.
Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, Briefings in Bioinformatics, doi:10.1093/bib/bbab114
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts’ curation and drug–target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit