Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Honokiol for COVID-19

Honokiol has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ramezani et al., Effect of herbal compounds on inhibition of coronavirus; A systematic review and meta-analysis, Authorea, Inc., doi:10.22541/au.170668000.04030360/v1
The outbreak of the new coronavirus (COVID-19) has been transferred exponentially. There are many articles that have found the inhibitory effect of plant extracts or plant compounds on the coronavirus family. In this study, we want to use systematic review and meta-analysis to answer the question of which herbal compound can be more effective against the coronavirus. The present study is based on the guidelines for conducting meta-analyzes. An extensive search was conducted in the electronic database, and based on the inclusion and exclusion criteria, articles were selected and data screening was performed. Quality control of articles was performed. Data analysis was carried out in STATA software. The results showed that alkaloid compounds had a good effect in controlling the coronavirus and reducing viral titer. Trypthantrin, Sambucus extract, S. cusia extract, Boceprevir and Indigole B, dioica agglutinin urtica had a good effect on reducing the virus titer but their selectivity index has not been reported and it is recommended to determine for these compounds. Also among the compounds that had the greatest effect on virus inhibition, including Saikosaponins B2, SaikosaponinsD, SaikosaponinsA and Phillyrin, had an acceptable selectivity index greater than 10. Andrographolide showed the highest selectivity index on SARS-COV2, while virus titration and virus inhibition were not reported. The small number of studies that used alkaloid compounds was one of the limitations and it is suggested to investigate the effect of more alkaloid compounds against the coronavirus for verifying its effect.
Liu et al., Plant‐derived compounds as potential leads for new drug development targeting COVID‐19, Phytotherapy Research, doi:10.1002/ptr.8105
AbstractCOVID‐19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Although some patients infected with COVID‐19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID‐19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID‐19 treatments due to their broad‐spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti‐SARS‐CoV‐2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS‐CoV‐2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS‐CoV‐2, with a focus on the application of plant‐derived compounds in animal models and in human studies.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit