Hapalindole H for COVID-19
Hapalindole H has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus, International Journal of Molecular Sciences, doi:10.3390/ijms231911131
,
The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.