FUBP3 siRNA for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
FUBP3 siRNA may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed FUBP3 siRNA in detail.
, Stem loop binding protein promotes SARS-CoV-2 replication via -1 programmed ribosomal frameshifting, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-025-02277-w
Abstract The -1 programmed ribosomal frameshifting (-1 PRF) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for keeping the balance between pp1a and pp1ab polyproteins. To date, the host factors influencing this process remain poorly understood. Using RNA pull-down assays combined with mass spectrometry screening, we discovered five host proteins interacting with -1 PRF RNA, including Stem Loop Binding Protein (SLBP). Our findings revealed that SLBP overexpression enhanced frameshifting and promoted viral replication. Moreover, the interaction between SLBP and -1 PRF RNA was predicted using the PrismNet deep learning tool, which calculated a high binding probability of 0.922. Using Electrophoretic Mobility Shift Assays (EMSAs) and RNA pull down assays, our findings demonstrated SLBP’s direct binding to the SARS-CoV-2 genome, with preferential affinity for the stem loop 3 region of the -1 PRF RNA. Using smFISH assays, we further confirmed their physical colocalization. The role of SLBP in promoting frameshifting was verified using an in vitro translation system. Further investigation showed that SLBP deletions reshaped the host factor pattern around -1 PRF RNA, diminishing interactions with FUBP3 and RPS3A while enhancing RPL10A binding. Together, our findings identify SLBP as a host protein that promotes SARS-CoV-2 frameshifting, highlighting its potential as a druggable target for COVID-19.