Ferrostatin-1 for COVID-19

Ferrostatin-1 may be beneficial for COVID-19 according to the studies below. COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 11,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed ferrostatin-1 in detail.
Yehia et al., SARS-CoV-2 Spike Protein Induces Time-Dependent and Brain-Region-Specific Alterations in Ferroptosis Markers: A Preliminary Study in K18-hACE2 Mice, International Journal of Molecular Sciences, doi:10.3390/ijms27031526
Post-COVID syndrome comprises persistent neuropsychiatric manifestations for more than 12 weeks after recovery from acute SARS-CoV-2 infection, yet its underlying pathophysiology is unclear. Ferroptosis, an iron-dependent form of cell death with three hallmarks, iron dysregulation, antioxidant failure, and lipid peroxidation, seems to be involved in COVID-19/post-COVID-19 pathophysiology. Here, we administered the SARS-CoV-2 spike protein S1 subunit intranasally to K18-hACE2 transgenic mice and quantified ferroptotic marker protein expression in four brain regions (hippocampus, prefrontal cortex, cerebellum, and olfactory bulb) at 2, 6, and 12 weeks post-administration, alongside ultrastructural assessment by transmission electron microscopy (TEM) that was limited to the hippocampus and prefrontal cortex. Two-way ANOVA revealed region- and time-dependent modulation of iron-handling, antioxidant, and lipid peroxidation markers. In the hippocampus, FPN1 was significantly increased at 2 weeks, while TFR1 showed a time-dependent pattern without significant week-specific differences. In the prefrontal cortex, DMT1 significantly increased at 2 weeks, and GPx4 showed an overall treatment effect with a trend of increase at 6 weeks. The cerebellum exhibited early increases in FPN1 and GPx4 and a delayed increase in MDA-conjugated proteins. In the olfactory bulb, FPN1 increased at 12 weeks, with GPx4 showing an overall treatment effect and an early trend of decrease. TEM identified ferroptosis-consistent features in the hippocampus and prefrontal cortex at all time points. These findings suggest that spike protein exposure may be associated with time-dependent and brain-region-specific alterations of ferroptosis-related markers. These preliminary findings are based on a limited sample size, which needs further research to elucidate the clinical implication and to study the mechanism in more depth as well as future validation with pharmacological inhibitors.
Zeng et al., Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future, Frontiers in Microbiology, doi:10.3389/fmicb.2023.1232453
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Motyl et al., SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms, International Journal of Molecular Sciences, doi:10.3390/ijms252212079
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson’s disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation—and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms—it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms.
Yuan et al., The role of cell death in SARS-CoV-2 infection, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-023-01580-8
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.