Eupatorium perfoliatum for COVID-19
Eupatorium perfoliatum has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARS-CoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory Response and Apoptosis, Diseases, doi:10.3390/diseases13020036
,
Background/Objectives: SARS-CoV-2 provokes acute oxidative stress in the lungs via cytokines, inflammatory mediators, and apoptotic factors, which might cause alveolar injury followed by severe respiratory syndrome during COVID-19 infection. The lack of particular antivirals for SARS-CoV-2 has opened novel avenues of complementary and alternative medicine as a potential remedy. The current study explored the mechanistic role of the ultradiluted formulation of Eupatorium (UDE) against SARS-CoV-2 recombinant S protein-mediated oxidative stress and mitochondriopathy. Methods: Cell line and BALB/c mice were used to report that SARS-CoV-2 S protein caused an inflammatory response and subsequent cytokine storm via the NF-κB pathway in the lung along with oxidative damage. Morphological examination was performed using DAPI staining and histology for treated cells and lung tissues of animals, respectively. The molecular mechanism of action of UDE was investigated through qRT-PCR for the genetic expressions of various cytokines, inflammatory, and apoptotic mediators; ELISA, immunofluorescence, immunohistochemistry, and Western blot for the translational expression of the same molecules assayed for genetic expressions; and biochemical assays for various enzymes and ROS. Results: UDE treatment suppressed the inflammatory cell infiltration and tissue-level oxidative stress and safeguarded mitochondrial integrity from free radical-mediated oxidative damage. Additionally, UDE played a direct role in restoring cellular redox homeostasis and reducing the inflammatory response by suppressing NF-κB, IL-1β, IL-18, caspase-1 expression, and ROS formation. Further, a plausible mechanism of action of UDE against S protein-induced damage was proposed. Conclusions: This study described a novel therapeutic approach against S protein-mediated hyperinflammation, apoptosis, and oxidative damage. Hence, UDE may be considered as a prospective alternative to combat life-threatening consequences of SARS-CoV-2 infection.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.