Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Elbasvir for COVID-19

Elbasvir has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Masoudi-Sobhanzadeh et al., Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries, Briefings in Bioinformatics, doi:10.1093/bib/bbab113
AbstractTo attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
Sharun et al., A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19, Narra J, doi:10.52225/narra.v2i3.92
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Nguyenla et al., Discovery of SARS-CoV-2 antiviral synergy between remdesivir and approved drugs in human lung cells, bioRxiv, doi:10.1101/2020.09.18.302398
The SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with currently 29 million confirmed cases and close to a million deaths. At this time, there are no FDA-approved vaccines or therapeutics for COVID-19, but Emergency Use Authorization has been granted for remdesivir, a broad-spectrum antiviral nucleoside analog. However, remdesivir is only moderately efficacious against SARS-CoV-2 in the clinic, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. We identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5 A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir’s apparent potency 25-fold. We therefore suggest that the FDA-approved Hepatitis C therapeutics Epclusa (velpatasvir/sofosbuvir) and Zepatier (elbasvir/grazoprevir) should be fast-tracked for clinical evaluation in combination with remdesivir to improve treatment of acute SARS-CoV-2 infections.
Tsegay et al., A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2, bioRxiv, doi:10.1101/2021.04.08.439071
AbstractRepurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding by <90%, measured the EC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to both Spike and ACE2. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction as well as identifying several potential inhibitors that could serve as templates for future drug discovery efforts.
Lou et al., Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph–Based Approach, Journal of Medical Internet Research, doi:10.2196/45225
Background The global pandemics of severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 have caused unprecedented crises for public health. Coronaviruses are constantly evolving, and it is unknown which new coronavirus will emerge and when the next coronavirus will sweep across the world. Knowledge graphs are expected to help discover the pathogenicity and transmission mechanism of viruses. Objective The aim of this study was to discover potential targets and candidate drugs to repurpose for coronaviruses through a knowledge graph–based approach. Methods We propose a computational and evidence-based knowledge discovery approach to identify potential targets and candidate drugs for coronaviruses from biomedical literature and well-known knowledge bases. To organize the semantic triples extracted automatically from biomedical literature, a semantic conversion model was designed. The literature knowledge was associated and integrated with existing drug and gene knowledge through semantic mapping, and the coronavirus knowledge graph (CovKG) was constructed. We adopted both the knowledge graph embedding model and the semantic reasoning mechanism to discover unrecorded mechanisms of drug action as well as potential targets and drug candidates. Furthermore, we have provided evidence-based support with a scoring and backtracking mechanism. Results The constructed CovKG contains 17,369,620 triples, of which 641,195 were extracted from biomedical literature, covering 13,065 concept unique identifiers, 209 semantic types, and 97 semantic relations of the Unified Medical Language System. Through multi-source knowledge integration, 475 drugs and 262 targets were mapped to existing knowledge, and 41 new drug mechanisms of action were found by semantic reasoning, which were not recorded in the existing knowledge base. Among the knowledge graph embedding models, TransR outperformed others (mean reciprocal rank=0.2510, Hits@10=0.3505). A total of 33 potential targets and 18 drug candidates were identified for coronaviruses. Among them, 7 novel drugs (ie, quinine, nelfinavir, ivermectin, asunaprevir, tylophorine, Artemisia annua extract, and resveratrol) and 3 highly ranked targets (ie, angiotensin converting enzyme 2, transmembrane serine protease 2, and M protein) were further discussed. Conclusions We showed the effectiveness of a knowledge graph–based approach in potential target discovery and drug repurposing for coronaviruses. Our approach can be extended to other viruses or diseases for biomedical knowledge discovery and relevant applications.
Tsegay et al., A Repurposed Drug Screen Identifies Compounds That Inhibit the Binding of the COVID-19 Spike Protein to ACE2, Frontiers in Pharmacology, doi:10.3389/fphar.2021.685308
Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50’s in the 4–9 μM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.
Nguyenla et al., Discovery of SARS-CoV-2 antiviral synergy between remdesivir and approved drugs in human lung cells, Scientific Reports, doi:10.1038/s41598-022-21034-5
AbstractSARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir’s apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit