Diallyl disulfide for COVID-19
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 10,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed diallyl disulfide in detail.
, Garlic-Derived Phytochemical Candidates Predicted to Disrupt SARS-CoV-2 RBD–ACE2 Binding and Inhibit Viral Entry, Molecules, doi:10.3390/molecules30234616
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting enzyme 2 (ACE2), a critical step in viral entry. Two garlic cultivars (Tigre and Fermín) were processed via oven-drying or freeze-drying, followed by maceration with CH2Cl2/MeOH (1:1) and fractionation with liquid–liquid partition. ELISA immunoassays revealed that freeze-dried Tigre (TL) extracts had the highest inhibitory activity (42.16% at 0.1 µg/mL), with its aqueous fraction achieving 57.26% inhibition at 0.01 µg/mL. Chemical profiling via GC-MS found sulfur and other types of compounds. Molecular docking identified three garlic TL-derived aqueous fraction compounds with strong binding affinities (ΔG = −7.5 to −6.9 kcal/mol) to the RBD-ACE2 interface. Furthermore, ADME in silico analysis highlighted one of them (L17) as the main candidate, having high gastrointestinal absorption, blood–brain barrier permeability, and compliance with drug-likeness criteria. These findings underscore garlic-derived compounds as promising inhibitors of SARS-CoV-2 entry, calling for further preclinical validation. The study integrates experimental and computational approaches to advance natural product-based antiviral discovery, emphasizing the need for standardized formulations to address therapeutic variability across viral variants.
, Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases, Current Issues in Molecular Biology, doi:10.3390/cimb47070577
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2.
, Potential medicinal plants used in the treatment of COVID-19: a review, Vegetable crops of Russia, doi:10.18619/2072-9146-2025-2-61-69
Novel coronavirus COVID-19 (SARS-CoV-2), the unexpected pandemic that been caused severe fright worldwide. It has presented the world with one of the most difficult global public health crises and the arrival of COVID-19 has kept the whole world on their toes. The spread of COVID19 has become a health emergency and attention has been raised worldwide to design prevention and management strategy. Although several clinical trials are ongoing, no approved medications from Food and Drug Administration are available at a time, after while some preventative vaccines have been developed, manufactured and deployed depending on variant of COVID-19. As situation warrants for the exploration of a successful antiviral, there should be a search for the remedies in nature medicine. Medicinal plants and their metabolites have long been used as a treatment option for various life-threatening diseases with minimal side effects. Thus this review aims to summarize previous outcomes concerning the role of medicinal plants in treating several life-threatening diseases for the potential medicinal plants used in the case of COVID-19 treatment. Some of these includes Turmeric (Curcuma longa Linn.), Black Cumin (Nigella sativa L.), Garlic (Allium sativum L.), and Ginger (Zingiber officinale Rosc.). These are important traditional herbal medicines to cure many complicated health ailments. However, further extensive researches and trials are suggested to discover the role of medicinal plants for management of the pandemic. Moreover, the use of potential medicinal plants for specific variant of COVID-19 and others life-threatening diseases has to be investigated.
, Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update, International Journal of Molecular Sciences, doi:10.3390/ijms232113564
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer’s disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19′s current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people’s natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.