Demethylcalabaxanthone for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Demethylcalabaxanthone may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed demethylcalabaxanthone in detail.
, Cheminformatics and systems pharmacology approaches to unveil the potential plant bioactives to combat COVID‐19, Journal of Molecular Recognition, doi:10.1002/jmr.3055
AbstractCOVID‐19 was a global pandemic in the year 2020. Several treatment options failed to cure the disease. Thus, plant‐based medicines are becoming a trend nowadays due to their less side effects. Bioactive chemicals from natural sources have been utilised for centuries as treatment options for a variety of ailments. To find out the potent bioactive compounds to counteract COVID‐19, we use systems pharmacology and cheminformatics. They use the definitive data and predict the possible outcomes. In this study, we collected a total of 72 phytocompounds from the medicinally important plants such as Garcinia mangostana and Cinnamomum verum, of which 13 potential phytocompounds were identified to be active against the COVID‐19 infection based on Swiss Target Prediction and compound target network analysis. These phytocompounds were annotated to identify the specific human receptor that targets COVID‐19‐specific genes such as MAPK8, MAPK14, ACE, CYP3A4, TLR4 and TYK2. Among these, compounds such as smeathxanthone A, demethylcalabaxanthone, mangostanol, trapezifolixanthone from Garcinia mangostana and camphene from C. verum were putatively target various COVID‐19‐related genes. Molecular docking results showed that smeathxanthone A and demethylcalabaxanthone exhibit increased binding efficiency towards the COVID‐19‐related receptor proteins. These compounds also showed efficient putative pharmacoactive properties than the commercial drugs ((R)‐remdesivir, favipiravir and hydroxychloroquine) used to cure COVID‐19. In conclusion, our study highlights the use of cheminformatics approach to unravel the potent and novel phytocompounds against COVID‐19. These phytocompounds may be safer to use, more efficient and less harmful. This study highlights the value of natural products in the search for new drugs and identifies candidates with great promise.