Debrisoquine for COVID-19

Debrisoquine has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed debrisoquine in detail.
García-Delgado et al., Garlic-Derived Phytochemical Candidates Predicted to Disrupt SARS-CoV-2 RBD–ACE2 Binding and Inhibit Viral Entry, Molecules, doi:10.3390/molecules30234616
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting enzyme 2 (ACE2), a critical step in viral entry. Two garlic cultivars (Tigre and Fermín) were processed via oven-drying or freeze-drying, followed by maceration with CH2Cl2/MeOH (1:1) and fractionation with liquid–liquid partition. ELISA immunoassays revealed that freeze-dried Tigre (TL) extracts had the highest inhibitory activity (42.16% at 0.1 µg/mL), with its aqueous fraction achieving 57.26% inhibition at 0.01 µg/mL. Chemical profiling via GC-MS found sulfur and other types of compounds. Molecular docking identified three garlic TL-derived aqueous fraction compounds with strong binding affinities (ΔG = −7.5 to −6.9 kcal/mol) to the RBD-ACE2 interface. Furthermore, ADME in silico analysis highlighted one of them (L17) as the main candidate, having high gastrointestinal absorption, blood–brain barrier permeability, and compliance with drug-likeness criteria. These findings underscore garlic-derived compounds as promising inhibitors of SARS-CoV-2 entry, calling for further preclinical validation. The study integrates experimental and computational approaches to advance natural product-based antiviral discovery, emphasizing the need for standardized formulations to address therapeutic variability across viral variants.
Baby et al., Exploring TMPRSS2 Drug Target to Combat Influenza and Coronavirus Infection, Scientifica, doi:10.1155/sci5/3687892
Respiratory viral infections, including influenza and coronaviruses, present significant health risks worldwide. The recent COVID‐19 pandemic highlights the urgent need for novel and effective antiviral agents. The host cell protease, transmembrane serine protease 2 (TMPRSS2), facilitates viral pathogenesis by playing a critical role in viral invasion and disease progression. This protease is coexpressed with the viral receptors of angiotensin‐converting enzyme 2 (ACE2) for SARS‐CoV‐2 in the human respiratory tract and plays a significant role in activating viral proteins and spreading. TMPRSS2 activates the coronavirus spike (S) protein and permits membrane fusion and viral entry by cleaving the virus surface glycoproteins. It also activates the hemagglutinin (HA) protein, an enzyme necessary for the spread of influenza virus. TMPRSS2 inhibitors can reduce viral propagation and morbidity by blocking viral entry into respiratory cells and reducing viral spread, inflammation, and disease severity. This review examines the role of TMPRSS2 in viral replication and pathogenicity. It also offers potential avenues to develop targeted antivirals to inhibit TMPRSS2 function, suggesting a possible focus on targeted antiviral development. Ultimately, the review seeks to contribute to improving public health outcomes related to these viral infections.