Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

CID 125990 for COVID-19

CID 125990 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Moschovou et al., Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein, International Journal of Molecular Sciences, doi:10.3390/ijms242115894
In this in silico study, we conducted an in-depth exploration of the potential of natural products and antihypertensive molecules that could serve as inhibitors targeting the key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules under study to these crucial viral components. To further comprehend the stability and molecular interactions of the “protein-ligand” complexes that derived from docking studies, we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics Generalized Born Surface Area (MM-GBSA) calculations on all “protein-ligand” complexes, underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. Furthermore, in order to expand our search for potent inhibitors, we conducted a structure similarity analysis, using the Enalos Suite, based on the molecules that indicated the most favored results in the in silico studies. The Enalos Suite generated 115 structurally similar compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD calculations, leading to the identification of two salvianolic acid analogues that exhibited strong binding to all the examined binding sites in both proteins, showcasing their potential as multi-target inhibitors. These findings introduce exciting possibilities for the development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus lifecycle.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit